
ARD-R:14 452 ARNNOTATION LANGUAGE DESIGN FOR ADA (ANNA)(U) STANFORD i/il
UNIV CA COMPUTER SYSTEMS LAD D C LUCKI4AM JAN 84
RRDC-TR-93-298 F30662-88-C-0022

UNCLSSIFIED F/G 912 N

EEEhEEEE

LL

13.6

U11 1.0 _
11.

11111-2 1. I4 '

* MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAUI-OF STANDARDS- 1963-A

4a

S%

,W. "W7

RADC-TR-83-298
Interim Report

Januury 1984

-. q

ANNOTATION LANGUAGE DESIGN FOR
'Ki. ADA (ANNA)

Stanford Univorsity
['.

-. 4-- Dr. David C. Luckham

APPROVE FOR PUDUC R.EA=" DISTR0MU URUNMITED
0IDTIC

L -! ELECTE 0

L1- S D/
ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
- Griffiss Air Force Base, NY 13441

84 04 23 009

This report has been reviewed by the RADC Public Affairs Office (PA) and

is releasable to the National Technical Information Service (NTIS). At NTIS

it will be releasable to the general public, including foreign nations.

RADC-TR-83-298 has been reviewed and is approved for publication.

APPROVED:

RICHARD X. EVANS
Project Engineer

APPROVED:

RAYMOND P. URTZ, JR.
-- Acting Technical Director

Comand and Control Division

FOI. THE COMMANDER:

JOHN A. RITZ
Acting Chief, Plans Ctfice

,'.

If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is no longer employed by your organization,

please notify RADC (COES) Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices

on a specific document requires that it be returned.

*" .

"- ""4' . % " = - '. - ' -, '' " -. , , ' ,. .- ' ' .' . ' .. ' . . , ' ". ,- ' ' "" . . ' -,, , '- , q " '

UNCLASSIFIED
s.CURTv CLASSIICATION OF TIS. PAGE rlWhen O.,fEn.,.d)

REPORT DOCUMENTATION PAGE READ LSTRUCTIONS• BEFORE CO.MPLETN G FORM

1. REPORT NUM4E1 2, GOVT ACCESSION NO. 3. REC;IICNT*S CATALOG NUue[q

RADC-TR-83-298 K:h~4/i6 ,I~L-
. TITLE ',d Subtitlej S. TYPE OF RePORT a PERIOO COVEREO

-'" Interim Report
-* ANNOTATION LANGUAGE DESIGN FOR ADA (ANNA) Oct 1980 - Sep 1981

- ." 6. PERFORMING OG. REPONT NUNMER

___._N/A
7. AuTnmOws) S. CONTRACT Om IAN' NUMUEN

Dr. David C. Luckham
I F30602-80-C-0022

9. PERFORMING ORGANIZATION NAME ANDO ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Stanford University AREA A WORK UNIT NUMBERS

Computer Systems Laboratory 62702F
Stanford CA 94305 55811907

11. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT DATE
Rome Air Development Center (COES) January 1984
Griffiss AFB NY 13441 ME N OFMIEROP PAGES

66
Id. MONITORING AGENCY NAME & AOORESSJ dlfferent !ra Controllin Offie) i15 SECURITv CLASS. rot ,his e poer

Same UNCLASSIFIED

ISe. OECLASSFICA7ION OOWNGRADINO

SCH EDULE

I6. OISTRINUTION STATEMENT (f this Report;

Approved for public release; distribution unlimited

IT. OISTRIBUTION STATEMIENT (at the abstact enteted In Block 20, It different ft.. Report)

Same

IIL SUPPLEMENTARY NOTES

RADC Project Engineer: Richard M. Evans (COES)

IS. KIEY WOROS (Cancrt o an rsverse side It neceary and Idntt' OF block number)
Ada Programming Language Formal Annotation Language

Ada Programming Support Environment Program Documentation
Assertions Program Verification
Error Detection Proof of Correctness
First Order Loaic Specification Language
20. ASTRACT (Canthn rea aeeside It mweeeesp And idlnti by blak numb.)

This interim report covers research work on Annotation language design for
Ada undertaken during October 1980 - September 1981. The major goal of
this research is the design and development of programming tools that may
be incorporated into an Ada Programming Support Environment during the
mid-1980 time frame. Since Ada is a very advanced language containing
many essential new features such as tasking, and standard Ada tools such
as compilers do not yet exist, our research has been structured so as to

DD i' n 1473 EoI O F NOV IS OSOLEE UNCLASSIFIED
SECURITY CLASSIFICATION OF TNIS PAGE (When Oete Ingered

.9, " ,=, , , % - , - . . ,, . . '. * .- . - , . . . , . . ' , . , % . ' ' . .
.9 . . - . . .• ,•,• , . . -

UNCLASSIFIED
£&Z.4lrY "...AWaiCAION OF THI1S PA~S& W2I. Dam Enaereej

approach the major goal b, first studying the error detection problem for
subsets of Ada corresponding to already highly used languages such as
Pascal. The error detection problem is an important starting point
because this attempts to analyze programs for common errors without
assuming that the programs have accompanying annotations. At the start
of this project no formal annotation language for Ada existed. This phase
of our research effort was to design an annotation language for Ada, called
ANNA. This would provide a basis for verification of Ada programs in
general. The report gives a preliminary manual for ANNA.

Comments provide a natural and universally accepted method of describing
the intended behavior of a program. In this report we propose a language,
ANNA, which extends Ada by providing a formal comment facility. In ANNA
formal comments are written with the same precision as programs, and

* included as an extension of Ada programs. Formal comments are either
virtual Ada text or annotations. Since annotations have a well defined
syntactical structure in ANNotated Ada, they can be processed by tools
such as verifiers, optimizers, documentation systems and support tools
for program development.

IIn making this proposal, we have had four principal considerations.

1. Constructing annotations should be easy for the Ada programer,
and should depend as much as possible on notation and concepts
of Ada.

2. ANNA should possess language features that are widely used in
the specification and documentation of programs.

3. Anna should provide a formal framework within which different
theories of specifying programs may be applied to Ada.

4. Annotations should be equally well suited for different possible
applications, not only for formal verification but also for
specification of program parts during program design and development

The ANNA design requirements place heavy emphasis on developing the ways in
which Anna can be used for specification and how it may be extended i.n the
future. As a consequence of the choice of a first order annotation
language, different theories and techniques of specifying programs may be
applied using ANNA. For example, previous work on assertional specifica-
tion of Pascal programs may be formulated in ANNA since any programming
concept may be defined by the first order axiomatic method (axioms are
simply stated as annotations) and used in annotations. It is also clear
that the algebraic method of specifying abstract data types may be applied
to packages in ANNA.

ANNA is incomplete, and may require future extensions. First, some
possibly useful specification concepts are not provided. Consider for
instance modal operators. These have to be defined axiomatically at the
moment, but it may be useful to include them among the basic predefined
operators in later versions. Secondly, ANNA does not include tasking.
An extension to include task annotations mnay require the introduction of

-~ new predefined attributes, for example task type collections, and the
semantics of task annotations will have to be defined.

UNCLASSIFIED
SeCURI?" CLASSIFICATION OP A1~0"Dt r

W-..- .-JL a -

'A ABSTRACT

This interim report covers research work on Annotation language design

for ADA.undertaken during October 1980 - September 1981.> The major

goal of this research I the design and development of programming tools

that may be incorporated into an Ada Programming Support Environment

during the mid-1980's time frame. Since Ada is a very advanced language

containing many essential new features such as tasking, and standard Ada

tools such as compilers do not. yet exist,-our research has been structured

so as to approach the major goal by first studying the error detection

problem for subsets of Ada corresponding to already highly used

languages such as Pascal. The error detection problem is an important

starting point because this attempts to analyse programs for common

errors without assuming that the programs have accompanying annotations.

At the start of this project no formal annotation language for Ada

existed. The second phase of our research effort was to design an

annotation language for Ada, called ANNA. This would provide a basis

for verification of Ada programs in general.

Work on error detection and the RUNCHECK verifier is covered in the

first Interim report for October 1979 - September 1980.-> This second

report deals with nr work on the design of ANNA.

Comments provide a natural and universally accepted method of describing

the intended behaviour of a program. In this report we propose a

language, Anna, which extends Ada by providing a formal comment facility.

In Anna formal comments are written with the same precision as programs,

and included as an extension of Ada programs. Formal comments are

either virtual Ada text or annotations. Since annotations have a well-

A

.4

defined syntactical structure in ANNotated Ada, they can be processed

by tools such as verifiers, optimizers, documentation systems and support

tools for program development.

In making this proposal, we have had four principal considerations.

1. Constructing annotations should be easy for the Ada programmer,

and should depend as much as possible on notation and concepts

of Ada.

2. Anna should possess language features that are widely used in

the specification and documentation of programs.

3. Anna should provide a formal framework within which different

theories of specifying programs may be applied to Ada.

4. Annotations should be equally well suited for different possible

applications, not only for formal verificationbut also for

specification of program parts during program design and

development.

The Anna design requirements place heavy emphasis on developing the ways

in which Anna can be used for specification and how it may be extended

in the future. As a consequence of the choice of a first order annota-

tion language, different theories and techniques of specifying programs

may be applied using Anna. For example, previous work on assertional

specification of Pascal programs Doare 69,Hoare and Wirth 73, SVG 79,

Luckham 79] may be formulated in Anna since any programming concept may

be defined by the first order axiomatic method (axioms are simply

* stated as annotations) and used in annotations. It is also clear that

the algebraic method of specifying abstract data types may be applied to

S

,'b

packages in Anna.

Anna is incomplete, and may require future extensions. First, some

possibly useful specification concepts are not provided. Consider

for instance modal operators. These have to be defined axiomatically

at the moment, but it may be useful to include them among the basic

predefined operators-in later versions. Secondly, Anna does not include

tasking. An extension to include task annotations may require the

introduction of new predefined attributes, for example task type collections,

and the semantics of task annotations will have to be defined.

z~r. Concurrently with design work on Anna, further work on error detection

has continued. This work has been concerned mainly with liveness errors

in tasking. -Since specifications for tasks are temporarily omitted from

* *.,ANNA, this aspect of error detection was given special priority. This

work is currently in progress, as is the Anna design, and will be

covered in our final report.

The report gives a preliminary manual for ANNA. Currently, a guide

on the use of ANNA in specifying and annotating Ada program is being

written.

Accession For

NTIS GA&I
DTIC TAB [
Unannounced (
Justification.

By
Distribution/

Availability Codes
Avail and/or

Dt special

Table of Contents

Table of Contents

1. INTRODUCTION 1

1.1 ADAPTION TO ADA1

1.2 CONVENTIONAL SPECIFICATION TECHNIQUES 1
* 1.3 FUTURE SPECIFICATION TECHNIQUES 2

1.4 SPECIFICATION DURING PROGRAM DEVELOPMENT 2
1.5 STRUCTURE OF THE REPORT 3

2. LEXICAL ELEMENTS 4
2.1 CHARACTER SET 4

*2.2 LEXICAL UNITS AND SPACING CONVENTIONS 4
2.3.-2.6 No additions.4
2.7 FORMAL COMMENTS 4

2.7.1 VIRTUAL ADA TEXT 4
2.7.2 ANNOTATIONS

4,-. 2.7.3 POSITION OF FORMAL COMMENTS6
2.8 No addition.6
2.9 RESERVED WORDS 6
2.10 TRANSLITERATION 6

3. DECLARATIVE ANNOTATIONS8
3.1 SYNTAX AND SCOPE OF DECLARATIVE ANNOTATIONS 8
3.2 ANNOTATIONS ON OBJECT DECLARATIONS 9
3.3 ANNOTATIONS ON TYPE AND SUBTYPE DECLARATIONS 10
3.4 No addition. 12

*3.5 No addition. 13
3.6 ANNOTATIONS ON ARRAY TYPES 13

*3.6.1 - 3.6.3 No addition. 13
3.6.4 ARRAY OPERATION SEQUENCES 13

3.7 ANNOTATIONS ON RECORD TYPES 14
3.7.1 - 3.7.3 No addition. 14
3.7.4 RECORD OPERATION SEQUENCES 14

3.8 ANNOTATIONS ON ACCESS TYPES 15
3.8.1 ACCESS TYPE ATTRIBUTES 15
3.8.2 COLLECTION OPERATION SEQUENCES 16

4. NAMES AND EXPRESSIONS IN ANNOTATIONS 18
4.1 NAMES IN ANNOTATIONS 18

4.1.1 -.4.1.2 No addition. 18
4.1.3 SELECTED COMPONENTS FOR RESULT VALUES 18
4.1.4 ATTRIBUTES 18

4.2-4.3 No addition. 18
4'4.4 EXTENDED EXPRESSIONS IN ANNOTATIONS 18

4.5 OPERATORS AND EXPRESSION EVALUATION 19
4.5.1 LOGICAL OPERATORS 19
4.5.2 RELATIONAL OPERATORS 20

4.6-.4.10 No addition. 20
4.11 QUANTIFIED EXPRESSIONS 20

V

,- - 2 .. .7 .7 . * * .

Table of Contents

4.12 IN VALUES AND OUT VALUES 21
4.13 DEFINEDNESS OF ANNOTATIONS 23

5. STATEMENT ANNOTATIONS 24

6. SUBPROGRAM ANNOTATIONS 26

6.1 ANNOTATIONS ON SUBPROGRAM DECLARATIONS 26
6.2 FORMAL PARAMETER ANNOTATIONS 27
6.3 ANNOTATIONS ON SUBPROGRAM BODIES 28
6.4 ANNOTATIONS ON SUBPROGRAM CALLS 29

6.4.1 THE 'OUT ATTRIBUTE. 29
6.5 RESULT ANNOTATIONS FOR FUNCTION SUBPROGRAMS 30
6.6 EXAMPLES. 30

7. PACKAGE ANNOTATIONS 34

7.1 PACKAGE STRUCTURE 34
7.2 VISIBLE ANNOTATIONS IN PACKAGE SPECIFICATIONS 35

7.2.1 PACKAGE AXIOMS 35
7.3 HIDDEN ANNOTATIONS IN PACKAGE BODIES 37
7.4 ANNOTATIONS ON PRIVATE TYPES 37
7.5. 7.6 No addition. 38
7.7 PACKAGE STATES 38

7.7.1 STATE TYPES 39
7.7.2 CURRINT AND INITIAL STATES 39
7.7.3 STATE COMPONENTS 40
7.7.4 OPERATION SEQUENCES 41
7.7.5 STATE RELATIVE RESULT VALUES 42

7.8 EXAMPLES OF PACKAGES WITH ANNOTATIONS 42

•8. VISIBIUTY RULES IN ANNOTATIONS 47

6.1 No addition. 47
8.2 SCOPE OF A DECLARATIVE ANNOTATION 47

8.3 VISIBILITY 47

9. TASK ANNOTATIONS 48

10. PROGRAM STRUCTURE 49

11. EXCEPTION ANNOTATIONS 50

11.2 ANNOTATION OF EXCEPTION HANDLERS 50
11.3 PROPAGATION ANNOTATIONS 50

12. ANNOTATION OF GENERIC UNITS 52

12.1.1 ANNOTATION OF GENERIC PARAMETERS 52

PREDEFINED Anna ATTRIBUTES 53

REFERENCES 54

vi

* *...*.*. ~ ~ -*.*. . * * *. *
! r - ,','',,: . ,N, i ", ".".',: -. . -'.-,'- o "-"-',.-.' - L - "-. "- " - > . -"-. -

7kRDCTO

.INTRODUCTION1

Comments provide a natural and universally accepted method of describing the intended behaviour
of a program. In this paper we propose a language, Anna, which extends Ada by providing a formal

p comment facility. In Anna formal comments are written with the same precision as programs, and-vincluded as an extension of Ada programs. Format comments are either virtual Ada text or

Since annotations have a well-defined syntactical structure in ANNotated Ada, they can be processed
* by tools such as verifiers, optimizers, documentation systems and support tools for program

development

In making this proposal, we have had four principal considerations.

1. Constructing annotations should be easy for the Ada programmer, and should depend as
much as possible on notation and concepts of Ada.

2. Anna should possess language features that are widely used in the specification and
A documentation of programs.

3. Anna should provide a formal framework within which different theories of specifying
programs may be applied to Ada.

* 4. Annotations should be equally well suited for different possible applications, not only for
formal verification but also for specification of program parts during program design and
development.

1.1 ADAPTION TO ADA

Goal (1) has had a major influence on both the syntax and semantics of Anna. The Anna syntax
closely resembles that of Ada. Formal comments occur within the Ada comment frame work. Anna
programs are therefore acceptable by Ada translators. Concepts in Anna are extensions of those in
Ada. For example Boolean expressions are extended to allow quantification. Collections of access
types are available in annotations using the attribute notation of Ada. The central specification
concept in Anna, the declarative annotation, is a generalization of the constraint concept in Ada.

* 1.2 CONVENTIONAL SPECIFICATION TECHNIQUES

Goal (2) requires that the basic annotation language is a first order logic extending Ada Boolean
- expressions with quantifiers and implication operators. This choice is clearly dictated by the

fact that most comments (informal or formal) are Boolean relationships between program variables.
The inclusion of Ada text as formal comments - called virtual Ada text -now gives us a powerful
comment facility without affecting the execution behavior of the underlying Ada program. For
example specifications containing elements of a computation that are not manipulated by the
program, e.g., history sequences of values of a variable, may be expressed in Anna by using both
virtual Ada text and annotations.

2 Introduction

However, this facility is not quite powerful enough. For example, the most successful method of
specifying access variable manipulations requires that annotations may refer to objects that are not
available in the programming language at all, i.e., Collections [Luckham and Suzuki 79]. (see also
section 6.3.2. [Ichbiah et al. 79b].) Therefore access type collections and standard operations on
them are added to Anna as predefined attributes; they may appear only in annotations. Similarly the
concepts of state and sequence of state transitions are fundamental in the specification of packages,
so Anna provides the basic sequence building operations in a notation adapted to Ada (see also
[Luckham and Polak 80b]).

To allow the correctness proof of programs raising exceptions (see for example (Bron et al. 77]),
propagation annotations are included in a notation adapted to Ada from (Luckham and Polak 80a].

1.3 FUTURE SPECIFICATION TECHNIQUES

Goal (3) is concerned with developing the ways in which Anna can be used for specification and how
it may be extended in the future. As a consequence of the choice of a first order annotation
language, different theories and techniques of specifying programs may be applied using Anna. For

*j example, previous work on assertional specification of Pascal programs (Hoare 69, Hoare and Wirth
73, SVG 79, Luckham 79] may be formulated in Anna since any programming concept may be defined
by the first order axiomatic method (axioms are simply stated as annotations) and used in
annotations. It is also clear that the algebr:aic method of specifying abstract data types may be

applied to packages in Anna.

Anna is incomplete, and may require future extensions. First, some possibly useful specification
concepts are not provided. Consider for instance modal operators. These have to be defined

-,. axiomatically at the moment, but it may be useful to include them among the basic predefined

,' .. operators in later versions. Secondly, Anna does not include tasking. An extension to include task
annotations may require the introduction of new predefined attributes, for example task type
collections, and the semantics of task annotations will have to be defined.

I

1.4 SPECIFICATION DURING PROGRAM DEVELOPMENT

Goal (4) expresses our concern for a wide applicability of the language. Use of Anna should not be
restricted to only verification of existing programs in the conventional sense. Anna is also suitable for

I:- .:: the formal specification of subprograms and packages during program development at a stage where
respective bodies are not yet available. Such specifications may be used to simulate interfaces at the
development stage. They will provide the basis for a proof of correct use of a subprogram or package

i .1 .independent of and prior to implementation, as well as a proof of correct implementation, (i.e.,
consistency of the body with the specifications). A specification will accompany a program through
all stages of its development, for instance by successive transformation (see (Bauer et al. 78]), and

. ... may even be generated as part of the development process (see [Broy and Krieg-Bruckner 80]).

[nA

':A

* *, °*-* -2• ." • o . oO -K o o-:.o .. ,,. o .o -

Introduction 3

1.5 STRUCTURE OF THE REPORT

This Report is structured in the same way as the Ada Reference Manual [ARM, lchbiah et al.80; see
also 79a,b]. It should be read as an extension to that document, informally describing the lexical
elements, syntax and semantics of Anna.

The syntax of Anna is an extension of the syntax of Ada; the syntax rules denote extensions or
replacements of rules in Ada with the same name. An Anna rule is often an Ada rule with additional
clauses; in this case three dots enclose references to the corresponding Ada rules. It is understood
that appropriate substitutions are performed. Consider for example

expre;sion ::-

adaexpression . . .
quantifier domain (; domain) z> booleanexpression

In this Anna syntax rule, the right hand side of the Ada syntax rule for expressions should be
considered to be substituted at the position of... adaexpression ... Now "boolean.expression" with
the italic identifier, boolean, refers to the Anna syntax rule; any occurence of expression has the
extended meaning of Anna. Note, however, that the Anna syntax only applies to annotations and not
to the underlying Ada program.

The separation of virtual Ada text and annotations in Anna from the underlying Ada program by
comment prefixes is not represented in the syntax of Anna, but is nevertheless lexically enforced to
make every legal Anna program a legal Ada program.

.. ..

4 EIA EEET

42 LEXICAL ELEMENTS

The lexical elements and conventions of Anna are those of Ada, with the extensions described in this
chapter.

2.1 CHARACTER SET

The following additional characters may be used in an annotation:

(g) Additional special characters

4 3 W 5 S

* 2.2 LEXICAL UNITS AND SPACING CONVENTIONS

The following compound symbols may be used in annotations:

2.3- 2.6 No additions.

-, 2.7 FORMAL COMMENTS

Anna permits two kinds of formal comments, virtual Ada text and annotations.

2.7.1 VIRTUAL ADA TEXT

A comment starting with a double hyphen followed by a colon is called a virtual Ada text and may be
referred to only in formal comments. A virtual Ada text is regarded as a comment in an Ada program.
In an Anna program, however, it is considered to be part of the program text and must satisfy the
lexical, syntactic and semantic rules of Ada with one exception: bodies of virtual subprograms and
packages need not be supplied.

Example of a virtual variable and a virtual function:

GHOSTX : INTEGER;
function LENGTH return INTEGER range 0 .. SIZE;

-- Ghostx and Length may only be referred to in formal comments

4AS

Lexical Elements 5

2.7.2 ANNOTATIONS

A comment starting with a double hyphen followed by a vertical bar (or exclamation mark) is called an
annotation. In an Anna program, such an annotation must satisfy the lexical, syntactic and semantic
rules of Anna.

An annotation is a quantified Boolean expression -- a Boolean expression that may contain
quantifiers (section 4.11). A variable that is quantified is called a logical variable; its scope of visibility
is the scope of the quantifier in the annotation. A variable that is not quantified is said to be a free
variable of the annotation. A free variable must be a program variable -- i.e. a variable declared in
the Anna text in which the annotation appears, and to which the normal Ada scope rules apply.
Program variables may be either arguments or parameters of an annotation, depending on context.
Parameters are evaluated when the annotation is elaborated.

Annotations may be generic and are instantiated according to the Ada rules.

Every annotation has a scope of application that is a region of program text for which it has a
meaning. The scope of an annotation is determined according to the Ada scope rules from its
position in the text.

The syntax and informal semantics of annotations in Anna are described in Chapters 3 - 12 of this
document.

Examples of annotations:

subtype EVEN Is INTEGER;
"-I whereforall X:EVEN m> X mod 2 - 0;
-- all values of subtype EVEN must be divisible by 2.
-- X is a logical variable.
-- Note that this annotation cannot be expressed as an Ada constraint.

MAX : INTEGER:
-- I 0 < MAX < 100:
-- MAX is a program variable argument of the annotation (section 3.2).
-- the values of MAX must satisfy the annotation throughout its scope.

type FUNNY is array (1. .MAX) of INTEGER:
"" I where for all A FUNNY; I: INTEGER range 1..MAX ,>

I mod 2 a 0 - A(I) MAX;
MAX is a program variable in the annotation. Since this is a type constraint

_- - - (section 3.3) MAX is a parameter of the annotation. All occurrences of MAX
-- in the annotation are elaborated in the same way as in the type declaration.
-- The values of FUNNY are then constrained to satisfy the elaborated annotation.

function ISEVEN (Y:INTEGER) return BOOLEAN;
"-l return Y In EVEN;

- the values returned by IS.EVEN must satisfy the constraint on the subtype, EVEN.
-- Yis a program variable argument of the annotation.

function IS-PRIME (P:NATURAL) return BOOLEAN;
." Ireturnnotexist X,Y:NATURAL >

(X > 1 and Y > 1)- X Y -P

' :, . , - -, ,,*-5 . , " , . . ". .. , Q...-' ". -. - -. -.', ., ,.. . . : ,,,,-.. ...%-. , .1- ..§; .. • ..-

6 Lexical Elements

-- X and Y are logical variables in the retu rn annotation defining primeness
-- which constrains the values returned by IS.PRIME. P is a program variable
-- argument and is evaluated at each call.

2.7.3 POSTON OF FORMAL COMMENTS

The legal position of formal comments is restricted by the syntax of Anna. Formal comments may not
.- appear in an Anna program everywhere an Ada comment may appear. For example, virtual Ada text

may appear only where it would be legal in Ada if the comment delimiters preceding it were removed.
Similarly, a declarative annotation may only appear in an Ada declarative part; a statement annotation
only in a statement position.

The syntactic description of Anna omits -- : and -- , it being understood that each line of an Anna
formal comment must start with one of these prefixes. Thus a formal comment that runs over several
lines must start with a new comment prefix on each continuation line.

Example of an annotation extending over more than one line:

e. procedure PUSH (E : in Elem);
-- raise OVERFLOW => STACK.LENGTH() - SIZE

-- I and [STACK;PUSH(E)] - STACK;

2.8 No addition.
4

2.9 RESERVED WORDS

.mThe following additional words are reserved in annotations:

exist that requires where -axiom

2.10 TRANSLITERATION

The following additional replacements are always allowed for characters that may not be available:

4'

4.

Lexical Elements 7

not
A and
V or

* 3 exist
V for all

8 DECLARATIVE ANNOTATIONS

3. DECLARATIVE ANNOTATIONS

Declarative annotations in Anna are annotations placed in a declarative part. They extend the Ada
concept of type constraint to other forms of declarations. However, more general Boolean
expressions are permitted in declarative annotations than Ada constraints.

Declarative annotations-are constraints over their scope of visibility with one exception. The Anna
package axiom declaration, permits annotations that are axiomatic to be associated with
declarations of packages. Axioms are guaranteed to be satisified by all entities declared in the visible
part of the package.

In this chapter we deal with annotations on object, type and subtype declarations. Declarative
annotations on subprograms are described in chapter 6, and on packages in chapter 7.

3.1 SYNTAX AND SCOPE OF DECLARATIVE ANNOTATIONS

declaration ... ada.declaration ...
I declarative.annotation;

declarative.annotation - boolean.expression I
type.constraint I
subprogram.constraint I
axiomatic.annotation

- , type constraint ::. where quantified, expression

subprogram.constraint:: where boolean, expression
axiomatic.annotation :: - axiom quantified.expression

The scope of a declarative annotation is the same as for a declaration at the same position. Thus a
.4 declarative annotation in an enclosed scope only holds in that scope.

A declarative annotation in Anna that is not a package axiom is an Anna constraint. This is a
-.-. generalization of the concept of a constraint in Ada. An Ada constraint can be expressed as an

annotation: for example,

INDEX : INTEGER range 0 .. SIZE;

is equivalent in Anna to

* INDEX INTEGER; "-I 0 s INDEX < in SIZE;

On the other hand, the generality of annotations permits the expression of a wider variety of
programming concepts and design intentions, even non.constructive or undetermined ones.

Example of an Anna constraint not expressible as an Ada type constraint:

subtype ODPRIME is INTEGER;*;"" "-I whereforall X : ODDPRIME -> ODD(X) and PRIME(X);

:'. " -- ODD and PRIME are previously declared boolean valued functions.

~...- - - - -- - - - - - - - - - - - --. 7

Declarative Annotations9

Example of an annotation whose truth is undetermined:

subtype FERMAT Is INTEGER;
- where for all F :FERMAT =>
-- I exist X, Y, Z :NATURAL 0>
--IXOOF +Yo F = ZO F:

Declarative annotations are elaborated according to the Ada rules for elaboration of declarations with

some minor extensions:

1. Variables bound by quantifiers are not elaborated.

2. Program variables (i.e. unquantifled variables) in type annotations and package axioms
are treated as parameters of the constraint and are elaborated Program variables
appearing in any other kind of annotations (e.g., object constraints) are treated as the
names of constrained objects and therefore are not elaborated.

3. Variables with mode In are elaborated.

4. An expression containing a virtual function is not elaborated if a body is not supplied for
that function.

5Elaboration of objects and type annotations takes place when elaboration of Ada text at
the same position would take place. Elaboration of annotations in a subprogram
specification takes place when that specification part is elaborated except that in mode
expressions are not elaborated then (see section 6).

Notes.

1. An annotation may not be computable in general since it may be an arbitrarily quantified
boolean expression in Anna. Checking of the correctness of such annotations must rely
on proof-theoretic methods.

4 2. Paraieters of an annotation may not be computed at elaboration if they depend on
values of virtual functions. Instead their values will be deduced by proof methods from the
annotations of the virtual functions.

3.2 ANNOTATIONS ON OBJECT DECLARATIONS

A declarative annotation on an object is a boolean expression appearing in a declarative part where
the object is visible such that the object occurs as a free variable in the expression. The annotation
constrains the values of the object throughout the scope of the annotation.

In general, for a declarative annotation on an object, X

X :T; -- I C(X);

% .I
L

10 Declarative Annotations

any use of X is conceptually equivalent to a call CHECK(X), where

function CHECK(A : T) return T Is
begin

If C(A) then
return A;

else
raise CONSTRAINTERROR;

end If;
end;

except that the predefined exception CONSTRAINT.ERROR will not be raised.

* Examples of object annotations:

LIMIT INTEGER :-*10_000;
-- I - 20in N : LIMIT < 20*ln N;
-- where N is a visible variable at this point; any value of LIMIT must satisfy

".' -- the inequality bounds for the value of N when the constraint is elaborated.

generic
SIZE : INTEGER;

package DATA Is
BOUND INTEGER: --I < < BOUND < INTEGER'LAST mod SIZE;

end DATA;
- I, -- the constraint on BOUND is generic and is instantiated by the actual value of SIZE.

-- In any instantiation of DATA aft values of BOUND must obey the actual constraint.

-- : function F (X : INTEGER) return INTEGER;
""- returnthat Y a> PRIME(Y) and 2"*X < Y and
"-I forall Z : INTEGER > PRIME(Z) and 2*X < Z - Y :5 Z;

X : INTEGER; -- I X < F(in X);
-- the parameter F(in X) is not elaborated since F has no body; its value

-- must be inferred from the specifications for F.

If a declarative object annotation in Anna involves several program variables, none of which has the
mode In, then it must hold for all of these variables.

Example of a declarative annotation on two variables:

M, N : INTEGER :- -0; N < M;

-- the value of N is constrained to be less than or equal to the
-- value of M throughout the scope of the declaration

S'p.

3.3 ANNOTATIONS ON TYPE AND SUBTYPE DECLARATIONS

A declarative annotation may be used to constrain a type or subtype declaration. Such an annotation
must immediately follow the constrained declaration and is bound to that declaration by the reserved
word, where. Access types may not be constrained.

* " . % -..a;.- .- ','. ; .. - ... -... .€ % '. .. '. ,. . , . , . . . • ,

Declarative Annotations 11

A type (subtype) constraint is a quantified expression preceeded by where and a single universal
quantifier over that type or subtype. All other quantifiers in a type constraint must be over types that
have previous complete declarations.

After elaboration a type (subtype) constraint must be a closed annotation -- i.e., all variables are
quantified. Any program variable in a type (subtype) constraint is treated as a parameter and is
elaborated. Thus all program variables in type constraints have the default in mode (section 4.12).

Type constraints have the form, (see Section 4.11):

typeconstraint ::a where quantifier identifier : subtypeindication ->
quantifiedexp ress i on

A type constraint is interpreted as restricting the domain of values of that type. Thus if we have,

type T Is T';
where for all X:T > C(X);

then the values of type T are constrained to be in tie set, (X I X in T' and C(X)). Such a constraint will

be consistent with the underlying program if, within its scope, the constraint is true of the values of all
objects declared of type T, all values of parameters of type T of procedure calls, and all values of type
T returned by functions.

Examples of an Anna type constraints-

type DATE Is
record

DAY : INTEGER range 1 . 31;
MONTH : MONTHNAME;
YEAR : INTEGER range 1 . . 4000;

end record;

"'1 whereforall X DATE -> X.MONTH - "FEBRUARY" - X.DAY <- 29;

type MAT Is array (1 . . N 1 . N) of REAL;
subtype DIAGONALMAT is MAT;
"'1 whereforall M : DIAGONALMAT; I,J : NATURAL ->

not I -J -4 M(I.J) a 0.0 and
--i I a J . M(I,J) I x;
-- X is a global program variable and is elaborated as a parameter of the
-- subtype annotation.

Notes

1. A type constraint also constrains the domain of values of the type in annotations.

2. The leading where binds a type constraint to the preceding type (subtype) declaration
.64 and avoids ambiguity with constraints on global objects.

3. All free variables in a type constraint are treated as In parameters and are elaborated
(section 4.12).

V. "

- .~. - -~ . - - - - - - --7**,. - -

12 Declarative Annotations

4. Since the only operations on access values are allocation, assignment, and equality test,
the ability to constrain such values is trivial. So constraints on access types are not
permitted.

5. A type constraint is equivalent to a set of declarative constraints placed within its scope
on objects and subprograms.

Successive annotations on -types and subtypes are equivalent to conjunctions of constraints and
therefore describe intersections of subsets of values of the type. A union of subsets can be obtained
by disjunction of constraints in a type or subtype annotation.

Examples of successive subtype annotations:

subtype NATURAL is INTEGER;
"- where for all X:NATURAL => X > 1;

subtype EVEN Is INTEGER;
-- I whereforall X:EVEN > X mod 2 - 0;

subtype EVENNATURAL is NATURAL;
--j wheretorall X:EVEN_NATURAL > X mod 2 - 0;

subtype NATURALEVEN Is INTEGER.
-- I whereforall X:NATURALEVEN => X > 1 and X mod 2 0 0:

-- Even.Natural and Natural.Even are equivalent
subtype ZERO_INTEGER is INTEGER;

' -- I whereforall X:ZERO_INTEGER => X - 0;
subtype PositiveINTEGER Is INTEGER;

"- whereforall X:POSITIVEINTEGER >
"- X in ZERO_INTEGER or X In NATURAL;

Examples of type constraints with inner quantification:

subtype GREATERONE is NATURAL;
- where for all X GREATERONE =>
"-I exist Y NATURAL > Y < X;
--. values of GREA TER.ONE are constrained to be greater than 1

subtype SOMEINTEGER is INTEGER;
"' Iwhere for all X SOME-INTEGER >
--" forall Y INTEGER > X a Y:

S- - SOME.INTEGER is empty -- i.e., no values of INTEGER satisfy
--the constraint.

References: quantified.expression, quantifier 4.11.

3.4 No addition.

A

Declarative Annotations 13

3.5 No addition.

3.6 ANNOTATIONS ON ARRAY TYPES

A method of annotating programs containing array, record and pointer types in Pascal has been given
in [Luckham & Suzuki 79], This method is based upon the use in annotations of Collections of
accessed values and predefined functions on arrays, records and Collections. It is applicable to Ada.
Anna provides notational facilities to do this.

In Anna, new names (primary terms) are introduced that denote sequences of assignment operations
on arrays and records. For access types, Collections and the predefined operations on collections
are introduced as attributes of access types. Sequences of operations on collections are names
(primary terms) in Anna.

3.6.1 . 3.6.3 No addition.

3.6.4 ARRAY OPERATION SEQDN=

For every army type T the following new names (primary terms) of type T are defined:

arrayoperationsequence ::- (arrayname; array.storeoperatlion
(; array.storeoperation}]

arraystoreoperation ::u expression f, expression) > expression

For an array type T, the operation sequence, [A; I.... In -> C1 where A is an object of type T, I to in
are index values for the n dimensions of T, and C is a value of the component type of T, denotes the
value of A after the value of the component A(11 I....n) is replaced by C. Sequences with more than
one array store operation denote values of A after the corrresponding sequence of changes to the
values of its elements.

Examples of array operation sequences in annotations:

[MY-TABLE; 3 -> 16]
-- denotes a value of MY.TABLE after MY-TABLE (3) :a 116;

SPACE ELEMARRAY;

(SPACE; INDEX -> E; INDEX' a> F]
-- denotes a value of type ELEM_ARRAY.

Array operation sequences may be used as names in indexed components in Anna.

Example of an array operation sequence in an indexed component-

[MY-TABLE; 3 > 16](3)
-- * 16;

14 Declarative Annotations

VNote: Array operation sequences satisfy the standard axiomatic relationship with array selection, e.g.,
in the one dimensional case:

[A; I => E] (J) - if I=J then E else A(J);

VExample: Annotation of a generic SWAP procedure specification using an array sequence:

generic
type ITEM is private;
type VECTORRANGE Is INTEGER range 0;
type VECTOR Is array(VECTORRANGE) of ITEM;

pcocedure SWAP (A : inout VECTOR; I,J : VECTORRANGE):
"- wherdout A - [in A; I => in A(J); J x> in A(I)];

3.7 ANNOTATIONS ON RECORD TYPES

3.7.1 - 3.7.3 No addition.

3.7.4 RECORD OPERATION SEQUENCES

For every record type T the following new names (primary terms). of type T are defined:

recordoperatonsequence : [recordname; record.storeoperat ion
(record.store-operation}]

record.storeoperation :: i Identifier => expression

For any record type, T, the operation sequence of length one, [R, I - > C] where R is an object of type
T, I is an identifier of a component, and C is a value of the corresponding component type, denotes
the value of R after the value of the component R.1 is replaced by C. I must not be the identifier of a
discriminant, and R.1 must exist for the corresponding variant. Sequences with more than one record
store operation denote values of R after the corresponding sequence of changes have been made to
its components.

Examples of record operation sequences in annotations:

rBIRTHOATE, YEAR ,> BIRTHOATE.YEAR +1]
-- denotes BIRTHDATE with a change to the YEAR component.

PRINTER : PERIPHERAL;

* [PRINTER': LINECOUNT > 1]

-- denotes a value of PRINTER of type PERIPHERAL with LINE.COUNT set to 1;

Record operation sequences may be used as names in selected components.

Example of a record operation sequence in a selected component:

* .- 7•'* *i- -. ,
-
. W*

Declarative Annotations 15

[PRINTER; LINE-COUNT -> 1].LINECOUNT = 1

Note: Record operation sequences satisfy the standard axiomatic relationship with record selection,
e.g.,

[R; I > E].J a if I-J then E else R.J;

3.8 ANNOTATIONS ON ACCESS TYPES

In annotations, an access type T has an associated package attribute, T'COLLECTION, that
encapsulates the collection of allocated objects. The visible operations of T'COLLECTION
correspond to the Ada constructs applicable to access type objects. These operations are also
available in Anna as attributes of T.

Note: [ARM), section 3.8, refers to Collections: "The objects created by an allocator and designated
by the values of an access type form a collection implicitly associated with the type." In Anna the
collection is introduced explicitly for annotation.

3.8.1 ACCESS TYPE ATTRIBUTES

For every access type T, defined as,

type T Is access S;

the following attributes are defined:

T'COLLECTION - the package collection of allocated .objects of type S (see Appendix G).
Notationaly, it is treated as any other package in Anna (see section 7). The type
of its states is denoted by rTYPE; variables of this type may be declared and used
in annotations. The name, T'COLLECTION in annotations is a variable whose
value is the current state of the package, T'COLLECTION.

T'TYPE - the type of states of T'COLLECTION.

T'NULL - the null value of access type T, a visible constant of the T'COLLECTION
package denoting the same value as S'(null) in Ada.

T'ALLOCATE(X: out T).
y. - a procedure attribute (i.e., a visible procedure of T'COLLECTION)

corresponding to new S; the out value of X is the newly allocated value. Values
for constraints are added if necessary.

T'ELEMENT (X : T) - a Boolean valued function attribute, returning TRUE if X has been allocated a
value in T'COLLECTION and FALSE if it has not.

r . . .

-- IF -fa..

16 Declarative Annotations

3.8.2 COLLECTION OPERATION SEQUENCES

For every access type T the following new names (primary terms) of type T'TYPE are defined:

collection~operation.sequence: a [collection-name; collection~operation
colictioppertion- ~collection..operation)]
collctinopeatin aallocateoperationI

selected.component ->expression
allocate.operation a: identifier'ALLOCATE (identifier)Elcollection name ::.a identifier

Collection operation sequences denote states of the collection.

Examples ot Collection operation sequences:

[T'COLLECTION: T'ALLOCATE (X)]
- - the collection after an allocation, X :- new S;
(T'COLLECTION; X -) A]
- - the collection after, X. all :a~ A;
(T'COLLECTION: T'ALLOCATE(X); X 0> A]

-- the collection after, X :- now S(A): for expression A,
-- or after, X :- new S-A; foraggregateA;

CC; X.F -> E]
-- the collection state that results by starting in state C and performing
-the assignment, X.F :a E;

Collection. operation sequences may be used as names in indexed and selected components.
Semantically meaningful terms are obtained if states of T'COLLECTION are selected by function calls
of the form, 'ELEMENT(X), or are indexed using objects of typo T.

Examples:

[T'COLLECTION;).T'ELEMENT(X)
-- true if the value X has been allocated in the collection

(T'COLLECTION; ...](X)
- - denotes the value of X. all

Example annotations on access variables

type T is access S;
X:T :~new S(A);
Y:T :new S(B);

-jX a/ Y and T'COLLECTION(X) =A;

declare
U, V :T

begin
U :* new S(A);
- T'COLLECTION.T'ELEMENT(U) =TRUE and
- T'COLLECTION.T'ELEMENT(V)- FALSE;
V :a U;
U.3ll :M 8;

Declarative Annotations 17

-- I T'COLLECTION(V) B;
end

"'1 out T'COLLECTION =
-- [in T'COLLECTION; T'ALLOCATE(U); U => A; U z> 8];

Notes: The Collection of a derived type is the same as that of its parent type. Axioms for collections
are given in Appendix G.

'a

',9

..
'a ,, " ',."".: , , . -: :'.';:. .. , ,.'- ..-..,_ , .,. . . , ' . .. , .. , .. , _ . . .,,.., .,•. -,- . . .,',.-,, ..--..: ..,, ... • ,. .., -... ,

18
NAMES AND EXPRESSIONS IN ANNOTATIONS

4. NAMES AND EXPRESSIONS IN ANNOTATIONS

4.1 NAMES IN ANNOTATIONS

The set of names in Ada is extended in Anna by special attributes, by selected components denoting
result values of subprogram calls, and by operation sequences denoting package states.

name :: ... ada'name...
I operationsequence

4.1.1 . 4.1.2 No addition.

4.1.3 SELECTED COMPONENTS FOR RESULT VALUES

Components of the result value of a function call can be denoted as selected components in Ada. In
Anna, the out values of a procedure call (that is final values of formal out or in out parameters) can
be expressed as selected components of a call to the 'OUT function attribute of that procedure (see
section 6 and Appendix A). In this case, the named parameter form should be used for thecorresponding parameter association to increase readability. The actual parameter denotes the in
value of the parameter association and can be expressed by an expression (in contrast to Ada, where
it must denote a variable).

Examples of out values of procedure calls:

POP' OUT(E => X).E -- final value of actual parameter X
SWAPIOUT *(U -> 3,V > 5).U -- value = 5

4.1.4 ATTRIBUTES

An attibute in Anna can be a package state (which is a value in Anna) or the type of a package state
(see section 7).

4.2 - 4.3 No addition.

4.4 EXTENDED EXPRESSIONS IN ANNOTATIONS

Expressions in annotations are extended by the usual logical implication operators and quantifiers, in
values, out values, conditional expressions, and operation sequences (see 7.7.5).

expression ::*
.. ada.expression ...
I relation --* relation
I relation #+relation

Names and Expressions in Annotations 19

Iquantified..express ion
Iconditional.,ex press ion

conditional..expression ::a If relation then expression
else expression.

relation ::a

..2-.elton.
Isimple..expression (relational.operator

simple..expr9ssion)

primary::

..adajprlmay..
Iinvalue
Iout..value
Ioperationsequence

4.5 OPERATORS AND EXPRESSION EVALUATION

loglcal..operator ::.- and or I xor I
The conditional control form, If then else, has the same precedence as the logical operators. As in
Ada. operators at the same level are applied in textual order from left to right in the evaluation of
expressions.

Note: The most general forms of expressions in annotations cannot always be evaluated.

4.5.1 LOGICAL OPERATORS

Operator Operation Operand Type Result Type

-0*#implication BOOLEAN BOOLEAN

The implication operator -~ has the usual mathematical meaning. A -8 is defined as (A -~ 8) and (B
- A).

In evaluating a conditional expression form, If A then B else C, the BOOLEAN relation A is First

evaluated. If A is true then B is evaluated. If A is false then C is evaluated.

Examples of conditional expressions:

if T'COLLECT ION. TELEMENT (X) then T'COLLECTION(X) - A else FALSE
-- this expression has a value when X has. not been allocated
-- so that T'COLLECTION(X) does not havye a value,
-whereas T'COLLECTION.T'ELEMENT(X) T'COLLECTION(X) aA

-- does not have a value.

S'

20 Names and Expressions in Annotations

[A;I=>E] (J) * if I *= J then E else A(J)
-- the conditional expression is-used here simply as a shorthand
-- for : I - J --o E and not I = J - A(J), the two expressions
-- being equivalent when I-J, E, and A(J) arealldefined.

SNote: -- and 4-have the meaning of < and = on boolean expressions, except that their precedence is
:- .- lower to allow relations as subexpressions.

Example of an implication operator:

St a St2 St2StI.INDEX a St2.INDEX
" '--is equivalent to.

(Sti a St2 Stl.INDEX - StZ.INDEX) and
(St.INDEX - St2.INDEX -P Sti - St2)

, .,*.. 4.5.2 RELATIONAL OPERATORS

A sequence of relational operators is defined as a sequence of conjunctions in the usual

mathematical way.

A opl B op2 C a (A opl B and B op2 C)

Example of a sdquence of relational operators
S s SQRT(N) < S + 1

.- is equivalent to

S S SQRT(N) and SQRT(N) < S + 1
.-,.

4.6-4.10 No addition.

4.11 QUANTIFIED EXPRESSIONS

Quantified boolean expressions have the usual mathematical meaning in annotations.

quantifiedexpression ::= quantifier domain (;domain) => boolean-expression

domain ::= identifier_list : subtypeindication
quantifier ::= for all I [not]exist[that]

The variables in the domain of a quantifier are called logical variables and are said to be bound by
that quantifier. Any variable in a quantified expression that is not bound by a quantifier is called free;
it must be a program variable and must obey the usual Ada visibility rules. A quantified expression in
which all variables are bound by quantifiers is called closed.

The scope of the quantified variables in the quantifier prefix is delimited at the left by => and extends
over the subsequent boolean expression. Thus in an expression of the form

'. for all X:S a> P(X) and exist Y:T => Q(X,Y)

Names and Expressions in Annotations 21

the scope of X extends over both P(X) and Q(X,Y), whereas that of Y is restricted to Q(X,Y).

Intuitively, the quantified variables are interpreted as ranging over the set of values of the
subtype.indication. Thus:

for all R:S => P(X) means "for all values of X of (sub)type S, P(X) is true";

exist Y:T a> Q(X,Y)
means "there exists a value of Y of (sub)type T ouch that Q(X,Y) is true".

exist that X:S , > P(X)
means "there exists a unique value of X such that P(X) is true", - i.e. the standard
iota operator in formal logic:

Examples of quantified expressions&

for all X:NATURAL => X > 1
forall N:NATURAL a>

existthat S:NATURAL -> S < SQRT(N) < S + 1;

Note: Type constraints restrict the domain of values of a type declaration. Hence quantification in the
scope defining the constraint is permitted only over previous complete type declarations (section 3.3).

4.12 IN VALUES AND OUT VALUES

The execution of a program can be formally modeled as a sequence of state transitions [FORM81]. At
each transition, the values of program variables may change. In an annotation, the values of an
expression containing program variables can be denoted relative to the initial state when the scope is
entered, the final state when the scope is exited, or relative to all states while the computation is in the
scope of the annotation. The initial or final values are denoted by prefixing the modes in or out to the
expression.

primary ::= ... Adria_primary...
I mode primary

mode ::= in I out

The In value of an expression E is written as in(E) and the in value of a variable V is written as in V. In
an annotation this denotes the initial value of E or V upon entry to the scope of that annotation.
Similarly the out value of expression E or variable V is written as out (E) or out V respectively. In an
annotation, it denotes the final value of E or V upon exit from the scope of that annotation. The
current value of an expression E is written as E. In an annotation, it denotes the value of the
expression in each possible state that can be observed 'as a result of a state transition in that scope.

An in value is elaborated when the annotation is elaborated, except in the case of annotations of a
subprogram specification.

The modes in and out may not be applied to logical variables i.e., variables bound by quantifiers in
the annotation.

• 4"-"-"% . . """"-"'"-"% ."""% '% ',"% % °-"-",, v I

4 : - ' . ",,.,. ' ,, 'q r " , , ", ,. '

22 Names and Expressions in Annotations

The application of modes to expressions must observe the following rules:

1. out may not appear in an expression prefixed by In.

2. If modes are nested in expressions, the innermost mode applies.

3. For each mode, @, and any function identifier, F, S(F(E)) means F(O(E)).

4. For each mode, 0, @(for all Y : T = > E means for all Y: T - > O(E) where 0 may not
be applied to any occurrence of Y in E.

5. For each mode, 0, and any indexed component, A(l), S(A(l)) means (0 A)(0(l)).

.. 6. For each mode, @, and any seclected component, R.X, O(R.X) means (@ R).X.

Notes: In an annotation, constancy of a variable can be denoted by in V - V. If the scope of the
annotation is a simple statement then V = out V.

Example of in values in object annotations:

X,Y:INTEGER; ,.- -- IX*02 + yes2 <-- In X*02- + in Y*02;

-- throughout the scope of X, Y, the sum of squares of their values is bounded by
-- by the sums of squares of their initial values

Example of in and 6ut values in object annotations:

type COLOR is (RED, BLUE, YELLOW);

C : COLOR; -- I In C > C > out C;
-- all values of C must obey the constraint throughout the scope;
-- Its initial value must be its largest, and the final value its smallest.

X:INTEGER; -- out X < X;

-- A consequence is out X < In X;

Example of a type constraint with an In parameter:

MAX : INTEGER
type FUNNY is array (1. .MAX) of INTEGER;
-- I where for all A : FUNNY: I:INTEGER range 1. .MAX=>

I mod 2 = 0 - A(I) <5 MAX;
-- all occurrences of MAX in the annotation are elaborated in the same way
-- as in the type declaration. Thus MAX is treated as having a default in mode.

Example of in and out modes in a procedure specification:

procedure SORT (A : in out INTEGERVECTOR);
--j whereout(PERMUTATION (A. in A) and ORDERED (A, in A)):

- -- the annotation means PERMUTATION (out A. in A) and

b _• .. • -..

Names and Expressions in Annotations 23

;. - - ORDERED (out A, In A);

4.13 DEFINEDNESS OF ANNOTATIONS

An Ada expression may not have a value, e.g., if it contains an uninitialized variable. Similarly, an
annotation may or may not have a value (i.e., be defined). This generally depends on whether its
subrelations and subexpressions have values. In particular its subrelations and subexpressions must
be defined over all values in the domains of quantification of the logical variables occurring in them.
Annotations that do not have a value are called undefined.

The rules defining the value of Anna quantified expressions extend those for evaluting Ada

expressions as follows:

1. Ada operators are evaluated according to the Ada rules.

2. A term, f(X), In the case where f is a virtual Anna function without a body is defined if X
has a value and the return expression in the result annotation of f has a value for the
value of X.

3. A -- B has a value if both A and B have values.

4. If A then B else C has a value if A has the value TRUE and B has a value, or A has the
value FALSE and C has a value.

. for all X: T , > A(X), exist X: T , > A(X) have values it A(X) has a value for every value of
the (sub)type T.

Examples of values of quantified expressions:

forall XY : INTEGER > X DIV Y - X DIV Y;
-- is undefined since X DIV 0 is undefined.

A forall X,Y : INTEGER > If Yu 0 then TRUE
else X DIV Y a X DIV Y:

-- is defined since the conditional expression has a value for all
-- values of X and Y. Its value is TRUE.

Note: The classical interpretation of the logical connectives requires that expressions such as A or B,
'4 A --# B, etc. do not have values if either A or B does not have a value. Since annotations extend the

set of Ada expressions it is clear that A or B may be undefined. Conditional expressions are
introduced into Anna to permit the programmer to construct annotations that are defined from
expressions built up from partially defined functions.

, .

",,4.. ' , : ¢'; ,,J'& ,?'."i'.o.,
._ _ _
",'-',. -. , .., ,-- ,.. , ._.,, .. ,., .. ,.. , .,,.,. .

24 STATEMENT ANNOTATIONS
.,

, 5. STATEMENT ANNOTATIONS

A statement annotation is an annotation in a statement position.

statement ::a ...ada.statement...
I statement_ an not at ion

-.... statement-annotation ::= boolean-expression

The scope of a statement annotation is the immediately preceding statement; the scope may therefore
be empty.

A'statement annotation is a constraint that must hold during the execution of the statement in its

scope. It is equivalent to a declarative constraint in the declaration part of a virtual block whose body
is the given statement. Elaboration of a statement annotation takes place immediately before
execution of the statement in its scope.

.* A statement annotation,

-- IC;

containing only In and out values (see 4.11) or else annotating a simple statement, is conceptually
equivalent to a call ASSERT (C), where

procedure ASSERT(B: BOOLEAN) Is
begin

If B then
return TRUE;

else
raise CONSTRAINTERROR;

end If;
end;

Examples of statement annotations:

X :- 0; -- IX - 0;
X :- X + 1; -- IX = In X + 1;
-- note that in annotations of simple statements X = out X

1i If A(X) > A(X + 1) then
Y :- A(X + 1);
A(X + 1) :a A(X);
A(X) := Y;

end if
-- I out A(X) : out A(X +1);
-- note that A(X) < = A(X + 1) is not always true, e.g., before or after
-- the first assignment, so the out-mode cannot be deleted.

Example of annotations of a loop:

while LOW < HIGH loop
MID :a (LOW + HIGH)/2;

• , ,*

- ' : ;,-: , j. *- -. , , -..-- :'.4 %.\,.,-;...-.;. .. '-.,--

Statement Annotations 25

If X > A(MID) then

LOW :* MID + 1;
else

HIGH :* MID;
end If;

end loop;
.

-- I In LOW <- LOW and HIGH <= In HIGH;
-"' LOW <- MID+1 and MID <= HIGH;

"-I ORDERED(A. In LOW, In HIGH)* ahd
"- (ISININTERVAL(X, A, in LOW, In HIGH) ->

ISININTERVAL(X, A. LOW, HIGH))
-- this constraint must be true of computation states
-- throughout the execution of the loop body.

Notes:

1. In annotations on simple statements, a current variable X denotes out X.

2. A statement annotation inside a loop acts as an inductive assertion in the sense of the
Hoare invariant [Hoare 69]: the assertion must hold each time the annotated statement is
executed within the loop.

Reference: in and out values 4.11.

..

,1.

r

- r ,, ,'' . ." ,,. ,. , . .,.. .. .''. "' 3°;'"", ;, ' .;,, , , , . .. ,

SUBPROGRAM ANNOTATIONS
26

6. SUBPROGRAM ANNOTATIONS

Subprogram annotations are declarative annotations appearing in a subprogram specification. The
scope of application of a subprogram annotation is the same as the subprogram declaration.
Consequently a subprogram annotation must be true of every call to the subprogram and it must be
true over the subprogram body.

6.1 ANNOTATIONS ON SUBPROGRAM DECLARATIONS

Annotations of subprogram declarations include constraints on formal parameters and results of
computations, and conditions under which exceptions may be propagated. Annotations of parameter
values and computation results are dealt with in this chapter, for propagation annotations see section

4.. 11.3.

subprogramdeclaratlon ::a
...adasubprogramdeclaration...
(where booleanexpress ion;)
Cresultannotat ion;
(propagationannotat i on ; }

The different kinds of annotations of a subprogram declaration permit'statement of (i) annotations on
4.. formal parameters (either in the parameter list or by means of the where clause) that constrain

parameter values on entry to, during execution of, and on exit from a subprogram, (ii) constraints on a
returned function value (by means of a result annotation), and (iii) constraints governing propagation
of exceptions.

The reserved word, where binds a boolean.expression annotation to a subprogram specification; this

is a declarative constraint on the subprogram. It must be true of all calls (i.e., it has the semantics of
a statement annotation on all calls), and it must be true of the implementation (i.e., it behaves as a
declarative constraint in the body of the subprogram).

These annotations permit formulation of entry/exit conditions in general. The in value in V refers to
the value of a variable upon entry to the subprogram, the out value out V refers to its value upon exit.

, A parameter annotation containing only in values is equivalent to an entry condition, i.e., a condition
that must be true before every call (section 6.3). An annotation containing only in and out values of
variables is equivalent to an exit condition. However, a parameter annotation containing a current
value of a variable V is a stronger constraint since it holds throughout the execution of the body and
implies corresponding entry and exit conditions.

Annotations of a subprogram declaration are elaborated when the declaration is elaborated. At that
time the operations performed are exactly those performed in the Ada elaboration of the declaration
that apply to the annotation - i.e., the elaboration of expressions that are legal in the underlying Ada
declaration. The resulting annotation constrains both the subprogram body and all. calls to the
subprogram. As a constraint on the body it is then treated as an annotation in the declarative part of

. - the subprogram body. The Anna elaboration of in mode expressions is performed when that
declarative part is elaborated. The corresponding constraint on a call is obtained by the substitution
of actual parameters for those formals of the subprogram specification that appear in the annotation.

4.,0 , . . . ,,4. , ,

. .1= ' : = + I" ° " , , ", . :. ' . + , ,+ L",• '+' ,''''... J '''.'% . '. . . ++

Subprogram Annotations 27

Examples of annotations of subprogram declarations

procedure RIGHTINDENT (MARGIN : out LINEJPOSITION);
-- I where 1 <5 out MARGIN < 120;
-- an exit condition, see section 6.3.

function "I" (NUMERATOR, DENOMINATOR : INTEGER) return INTEGER;

--" where DENOMINATOR * 0;
,"I an entry condition.

.procedure INCREMENT (X :in out INTEGER);
- where -2e*36 < X < 20*36;

-- a parameter constraint that must hold during execution.
"-I where out X - In X + 1;
-- an exit condition.

function COMMONPRIME (MN : INTEGER) return INTEGER;
"- return P : NATURAL -> M mod P = 0 and
--j N mod P = 0 and ISPRINE (P);
-- a result annotation, see section 6.5.

The generic parameters of a generic subprogram may appear in its annotations. In this case the
annotations are also generic and define a template for annotations obtained by applying the Ada rules
for instantiation of generic subprograms. Each instance of the subprogram is annotated by the
corresponding instance of the generic annotation.

Note: For an in out parameter X, the declarative parameter annotation

In X - out X
-J", 4",

means that the value upon entry is the same as the value upon exit, whereas,

InX = X

means that throughout the subprogram body each value of X is the same as the value upon entry, i.e.,
V the value of X remains constant.

6.2 FORMAL PARAMETER ANNOTATIONS
~~parameter_decl aratilon : :=

... ada.parameter.declaration...

I declarative parameterannotat ion

declarative..parameterannotation ::= booleanexpression

Declarative parameter annotations may be given on individual parameters in the formal part as well as
following the reserved word where subsequent to the subprogram specification. In either case the
semantics is the same -- i.e., the constraining condition must hold for calls and throughout the scope
of the body of a subprogram.

Objects declared globally to a subprogram declaration or body are treated as if they were additional
parameters: constants correspond to additional in and variables to additional in out parameters.

r%'.e-
-

J P
- -A

28 Subprogram Annotations

.5 %

Examples of formal parameter annotations:

procedure EXCHANGE (FROM, TO : in INDEX; - FROM < TO);

1 4 procedure P (X: in INTEGER; -- IX > O:
oeu. Y,Z: inout INTEGER);

-[where Y < Z;

--here X > 0 and Y : Z must hold throughout the body,

--and imply the entry assertion in X '> O and in Y in Z
=..'..--and the exit assertion out Y < out Z

Note:

Annotations constraining parameter values may be placed in the parameter list or in the where
clause; the choice is basically a matter of taste in maintaining the Ada formatting of the formal part of
a subprogram specification.

,

6.3 ANNOTATIONS ON SUBPROGRAM BODIES

subprogram..body ::a

... Adasubprogram..specilcatlon...
(booleanexpress ion; }
[resultannotat Ion;]
(propagationannotat ion;)

Is
deci aiative_part

N' begin
sequence-ofstatements

[exception
(exceptionhandler)]

end [designator] ;

For a subprogram body, the setnantics of annotations of the subprogram specification part of the
14 body, including result and exception annotations, is the same as for annotations in a subprogram
7 declaration. The syntax differs only in that the reserved word where may be omitted.

If a subprogram declaration and its body or stub occur in the same declarative part, the annotation ofIthe specification parts of both must be identical. As in Ada, if a subprogram specification part with
annotations is repeated, the second occurrence is never elaborated.

Example of an annotation of a subprogram body:

Nprocedure SWAP (U,V: in out ELEM)

"'1 out U * in V and out. V * in U;
Is

T Elem :-U;
_begin

U :- V; V :- T;
end SWAP;

•a

Subprogram Annotations 29

Notes:

1. For a virtual Ada subprogram specification, a body need not be supplied.

2. The reserved word where may be omitted from annotations of the specification part of a
subprogram body since no ambiguity with annotation of other units can result.

6.4 ANNOTATIONS ON SUBPROGRAM CALLS

Annotations on subprogram calls are a special case of statement annotations. A subprogram call,

like any simple statement, is considered to be an atorr-c operation. Thus, a current value, X, in an
annotation of a subprogram call denotes the final value, out X. Similarly, the values of an actual In
out parameter on entry to and exit from a call can be constrained by a call annotation; its values
during execution cannot be constrained by a call annotation.

Annotations of subprogram declarations impose constraints on the in out values of actual
parameters of calls. The actual constraint on a call is obtained by substituting the actual parameters
of the call for the formals in the declarative annotation.

Examples of annotations on subprogram calls:

SWAP (A, 8): -- I out A = in 8 and out B a in A;
-- constraint on a call imposed by the previous annotation on the body of SWAP

P (F. I, Z); -In I : in F and out I < out Z;

6.4.1 THE 'OUT ArRIBUTE.

To facilitate construction of expressions involving the out values of procedure parameters resulting
from calls, Anna associates a function attribute, 'OUT, with each procedure. If P is a procedure,
P'OUT is a function returning a record whose components are the out values of the in out and out
parameters of P. These values can be selected using the names of the formal parameters of P. The
parameters to P'OUT are the same as those of P.

Examples of expressions using the 'OUT attributes to denote out parameter values:

procedure BINARYSEARCH(X : ORDEREDARRAY; K : KEY; R : out INDEX);

-- I A (BiNARY_SEARCH'OUT(X => A, K > 10, R => PLACE).R) = 10;

procedure POPTOP (Y : out ITEM);
-- I (STACK; PUSH(X)].POPTOP'OUT(Y).Y - X;
-- the out value of .Y after applying in sequence PUSH(X) and then
-- POPTOP(Y) to a STACK package is denoted by the left side expression.

"i

r.;.. ,%, *,,...,., .,.,, ., %. ..*,-.....,.4~* ~*. ____,,.....

30 Subprogram Annotations

6.5 RESULT ANNOTATIONS FOR FUNCTION SUBPROGRAMS

result-annotation ::a
return[[that] domain -0] expression

A result annotation specifies the result of a function. It is preceded by the reserved word return and
will normally contain as free program variables the formal parameters of the function and its global
variables. The quantifier that is expected to be useful in characterizing unique solutions to
expressions.

Example of a result annotation:

function SQRT (N: NATURAL) return NATURAL;
-- I returnthat S: NATURAL => S*2 < N < (S+1)002;

A6.6 EXAMPLES.

-j

* .4

-Z::

e .

4,'4.4 / ,. , ' r''.' ""'' '' ' '". ' ''''''''_'':' ' ,"" . '""" ". -. "" """. " """

.77-.u0% --'

Subprogram Annotations 31

1. Dijkstra's Dutch National Flag program

-- CONCEPTS is a virtual generic package defining the annotation concepts
-- PERMUTATION and SWAPPED. It is instantiated for each context (i.e.
-- set of types). CONCEPTS does not have a body.

- generic
.. -- : type INDEX is (<>);

- -: type ELEMENT is private;
"- -: type GENERICARRAY is array (INDEX) of ELEMENT;

- package CONCEPTS is

--. function SWAPPED(A: GENERICARRAY; I,J: INDEX) return GENERIC-ARRAY;

function PERM (A, B: GENERICARRAY) return BOOLEAN;

'"" axiom for all AB: GENERIC-ARRAY; I,J: INDEX->

-- I SWAPPED(A.I,J)(J) = A(I) A
SAED(KJ--) SWAPPED()(J) A

Vol A KJ - SWAPPED (AWIAJ)(K) - A(k)) A

-- PERM(AA) A

"'1-I (PERM(AB) -- PERM(B,A)) A

(PERM(AB) A PERM(B,C) -* PERM(A,C)) A

PERM(SWAPPED(A,I,J),A);

-- : end CONCEPTS;

constant N: INTEGER :-
subtype INDEX is INTEGER range 1 .. N;
type COLOR is (RED,WHITE,BLUE);

N: type COLORARRAY is array (INDEX) of COLOR;

package CONCEPT_INSTANCE is new CONCEPTS(INDEXCOLORCOLOR-ARRAY);

use CONCEPT_INSTANCE;

-- : function FINAL (C: COLOR; A: COLORARRAY; I,J: INTEGER)
- return BOOLEAN;

return for all K in range I .. 3-1 -> A(K)-C;

.4

-4.. ... - - ,."-.. °

32 Subprogram Annotations

function SWAP (A: COLORARRAY; I,J: INTEGER) return COLOR.ARRAY;
-- I return SWAPPED(AIJ);

procedure DUTCH(A: in out COLOR-ARRAY; N: INTEGER; I,J: out INTEGER)
"'- In 1 < N;
"'1 PERM(out A, in A);
-- I out (ISI A ISJ A JSN A FINAL(BLUEA,1,I)

A FINAL(WHITE,A,I,J) A FINAL(RED,A,J+IN+I));

- -- end of ANNA procedure specification

Is

K : INTEGER; "'l K S N+1;
"'1 PERM(Ain A);

-- A and K are constrained throughout the body.
begin4- I :" 1;

J : 1;
K : N+1;

loop -- I FINAL(BLUE.A,,IX) A FINAL(WHITE,AI,J) A
- FINAL(RED,A,K.N+I); -- see Note 1

exit when J >- K;
if A[J] BLUE then

A :- SWAP(AI,J);
J : J+1;
I :" I+1;

elsif A(JJ- WHITE then
J :- J+1;

else -- AJ] = RED, see Note 2
" K := K-i;

A :- SWAP(A,J,K);
end if;.

end loop;
-- I 1<I A ISJ A JK; -- seeNote3

end DUTCH;

lb Notes.

1. This assertion has the same semantics as a loop invariant in Hoare's sense.

2. This is an informal comment, but it could be written as an annotation.

3. A statement annotation of the loop statement (i.e., it holds everywhere within the loop.)

Each annotation in the body of DUTCH appears at the place where its scope is largest. These
annotations are sufficient to prove the out specification of the procedure. Note also that the
inequalities annotating the loop cannot be expressed as object constraints in the declarative part as i
and J are out parameters that cannot be initialized except in the statement part. This is a case of ADA
getting in the way of the most natural form of annotation.

Alternative definitions:

.-'S, . . . • . . .: " • ,, , . . , . . , .

S.Subprogram Annotations 33

**.*

FINAL could be defined by:
-" I return If IkJ then TRUE

else (A[J-I]-C A FINAL(CA,I,J-1))
v (A[I]-C A FINAL(CA,I+1,J));

- SWAPPED could be defined as:
SWAPPED(A,IJ)(K)

- if Kil then A(J)
"'I elsif K-J then A(1)
-- I else A(K);

.,-%

-- 4

...

34 PACKAGE ANNOTATIONS

* 7. PACKAGE ANNOTATIONS

Now annotation concepts are introduced to permit adequate annotation of packages and of programs
that use packages.

The basic concept used in annotations of the visible part of a package or of a program using a
package is the package state. Viewed from the outside, a package is treated conceptually as a
composite object of some new (not defined in Ada) type. The values of this type are called states. In
Anna, package states are denoted by identifiers and by sequences of operations. For each package
the type of its states and the value of its initial state are attributes of that package. The name of a
package may be used to denote its state in annotations.

A second fundamental concept is the package axiom. Axioms are annotations declared within the
visible part using the reserved word, axiom. They express properties of the visible elements of a
package that are guaranteed by the implementation in the package body. Axioms behave as
promises outside of a package and may be assumed by all programs using the package. The
package body is constrained by the axioms; that is, the implementation of the package must satisfy
the package axioms.

This chapter describes the new annotation concepts for packages.

7.1 PAC.KAGE STRUCTURE

Package annotations may appear in the visible, private, and body parts of packages. For the
purposes of annotation, the private part of a package should be considered as part of the package

%J. body. However, Anna maintains the Ada package structure, so annotations may appear separately in
both parts. Annotations in the visible part of a package specification are called visible annotationsz
annotations in the private part or body are called hidden annotations. The information contained in
the Ada package specification is only sufficient in general for correct syntactic use of the package.
The purpose of Visible annotations is to complete the description of a package. The information
conveyed by the visible annotation should be sufficient to understand how the package functions and
to make it unnecessary for a user to inspect the implementation in the private part and body. Visible
annotations of a package specification have many possible uses. First, they provide information that
may be used to classify the package (in a database say) independently of any implementation.
Second, they can be used in determining correct interfacing either during bottom up program
development when the implementation of a package should be concealed, or during top down
development when an implementation is not yet available. Thirdly, during top down development,

4 visible annotations defining-the desired properties of a package provide a guide for the implementor;
the package body must satisfy the visible annotations. Annotations of the private and body parts of a

upackage have two purposes. -Description of the intended behaviour of the implementation of the
package in the package body, and definition of a representation of all concepts used in the visible

annotation in terms of the local elements of the package body.IIA generic package declaration defines a template for packages obtained by instantiation of that
declaration. Annotations of a generic package may contain the generic parameters. Such
annotations therefore define a template for package annotations obtained by applying the Ada

'Sgeneric package instantiation to them. Instances of a generic package are annotated by
corresponding instances of the generic annotation.

- S.%.*~' %..
5I~ %A ..- * I -

Package Annotations 35

For a virtual Ada package specification in Anna, a private part or body need not be supplied.

7.2 VISIBLE ANNOTATIONS IN PACKAGE SPECIFICATIONS

Annotations in the declaration part of a package specification are called visible annotations. They are
declarative annotations and their scope of application is the scope of the package declaration.
Visible annotations are constraints over their scope of application except in the case where they are
declared as the axiom of the package (section 7.2.1).

Annotations on any declared item in a package specification may be included in that specification.
These may be annotations of types, objects, or subprograms as before. They may also be annotations
of exceptions (Section 11), generic parameters (Section 12), or other packages. An annotation of an
individual item declared in the package specification has the same semantics in its scope of
application as any annotation of the same kind of declaration; i.e., it has the semantics that would

* *.*~.result if the name of the item were qualified by the package name and the package specification
10 boundary was deleted.

'S Annotations in a package declaration are elaborated when the declaration is elaborated.

Generic formal parameters may appear in annotations. The formal parameters are replaced by the
corresponding actual generic parameters in the generic instantiation at elaboration and must obey

M the Ada matching rules. An annotation in the generic part of a generic package declaration may be
used to constrain the actual generic parameters in instances of the package.

Notes.

1. Annotations of array record and access types (sections 3.6 - 3.8) are special cases of
annotations of the visible parts of packages.

2. To state visible properties, it is often necessary to introduce auxiliary operations, for
example, by means of declarations in virtual Ada text. Such auxiliary operations cannot4 be Amed in the underlying Ada program; their only purpose is to aid in the annotation (see
section 2.7.1).

3. Visible annotations may refer to individual items or may describe properties about the
interrelation of visible items.

4. Visible annotations will normally include statements about package states, in particular,

very powerful means of expressing properties of groups of visible items in the package
specification (see section 7.7).

7.2.1 PACKAGE AXIOMS

In Anna an axiom may be declared in a package visible part. An axiom is a quantified boolean
expression following the reserved word, axiom.

36 Package Annotations

I

package.axiom :: = axiom quantified.Boolean.expression

After elaboration a package axiom must be a closed quantified expression not containing free
program variables (section 4.11).

In general, an axiom will be a conjunction of Boolean expressions which are referred to as the
package axioms. Package axioms express properties of the visible entities of the package that are
guaranteed to hold true in the scope of visibility of its declaration. Thus, for example, in analyzing the
correctness of a program that uses a package, the package axioms may be assumed. Package
axioms constrain the body of the package; i.e., the implementation of the package must satisfy its
axioms.

Example of axiomatic annotations for the package STANDARD:

package STANDARD Is

-- I axiom
-- (forall A, 8, N : INTEGER => A mod 8 = (A + N * 8) mod 8) and
-- I (for all A, B : INTEGER >
-- A a (A/B)*B + (A rem 8)) and
-- ~ (-A)/B - -(A/8) u A/(-B) and
-- A rem (-8) a A rem 8 and
-- (-A) rem B - -(A rem B)) and . . .

end STANDARD;
* '. .p.

Example of generic axioms of a generic Stack package:

generic
*; type ELEM is private;

package STACK Is

""-I axiom
--" forall St : STACK'TYPE; X. Y : ELEM >
--. I [St; PUSH(X); POP(Y)] = St and

St' INITIAL.LENGTH() = 0 and

end STACK;

Note: If axioms are to be given for a user-defined type, the type declaration must be encapsulated in a
package. Generally this will be a private type declaration and the visible operations of the package
will be the constructors and selectors of the type.

-A .;. . - , - % . % - , - , . .,,
... .,4. ' , , ' , , - . ' -' .. , ., , , , ' -, . . , , ," .. .' . ' , . ' .' -'. .., .. ., .; ' '',, - ... ; -'

Package Annotations 37

7.3 HIDDEN ANNOTATIONS IN PACKAGE BODIES

Hidden annotations of a package consist of the annotations in the private and body parts. Hidden
annotations have two purposes.

1. To specify the intended, behaviour of the implementation of the package. For this
purpose annotations of types, objects, statements, subprograms, and packages are used
to specify all entities declared within the body. These entities include both the bodies of
entities declared in the visible part of the package and entities that are local to the body.

-. *.2. To seiyteipeettoofalvrulentities declared in the visible part of the
package. Such entitles will normally be declared for use in visible annotations. All visible
entities must be redeclared in the package body; this includes both Ada entities and
virtual Anna entities. Hidden annotations must specify the virtual entities even though
bodies need not be supplied for virtual units. In particular a virtual private type must have
a completed declaration either in the package body or private part.

Example of an auxiliary declaration tor annotation of a STACK package:

function LENGTH return INTEGER range 0 .. MAXSTACK;
-- I return STACK. INDEX;

-- LENGTH is a virtual function used in visible annotations of STACK.
-- This specification with annotation is declared in STACK body where
-- the local variable, INDEX, is visible.

Notes:

1. Although Anna auxiliary operations must have annotated specifications in the package
body, no explicit bodies need be supplied.

2. The package state type, 'TYPE, has a default type definition in the package body (section
7.7.4).

U 3. The declarations of private types and annotations of visible (actual and virtual) entities
allows verification of the desired properties stated in the visible annotations in terms of
the implementation chosen in the body.

7.4 ANNOTATIONS ON PRIVATE TYPES

Private types may be annotated by both type constraints and package axioms.

Constraints on private type declarations must obey the same restrictions as any type constraint and
have the same semantics (section 3.3).

A constraint on a private type declaration in the visible part of a package will constrain only the
optional discriminant and default values since no other structure is visible.

4, Private type annotations in a visible part will in general be axiomatic. These will be given using the

38 Package Annotations

visible operations of the package, including virtual operations declared in the visible part for purposes
of annotation. The axioms will define the properties of the allowable operations on the type. Thus the
Ada package and private type constructs together with the Anna package axioms provide a powerful
method of defining abstract data types independently of any implementation.

A constraint on a private type declaration in the private or body part is a type constraint over the
package private and body parts. As such it constrains all values assigned to variables of the type
within the hidden part of the package. As a consequence, parameter values and function return

* values of the type must obey the constraint for all subprograms whose bodies are in the package
body. Since values assigned to variables of the type declared outside the package can only be
constructed using the visible subprograms of the package, it follows that the values of outside
variables will also obey the hidden constraint. Hence, such constraints may be assumed on entry to

~ any visible subprogram.

Annotations on a limited private type declaration may use equality on that type (even though
4 equality is not available in the Ada text). It must be remembered that equality in annotations always

denotes logical identity - i.e., it obeys the substitutivity axiom.

* v Notes:

1. Visible annotations on private types are essentially abstract data type specifications.

2. Virtual private types declared in the visible part of a package may have their full
declaration in either the private or body part.

a. Hidden constraints on private types generalize Hoares concept of Monitor invariant
(section 7.7).

Example of a visible axiomatic annotation of a private type

package KEY...MANAGER Is
type KEY Is private;
NULL-.KEY :constant KEY;
procedure GET_.KEY (K :out KEY);
function "<" (XY :KEY) return BOOLEAN;

V -- ~axiom for all K KEY z> NULL-..KEY < K or NULL-KEY aK;

end KEY-MANAGER;

7.5-7.6 No addition.

7.7 PACKAGE STATES

V... The basic new concept introduced in Anna for use in package annotations is the package state. This
concept is intended to -facilitate writing external annotations, i.e., visible package annotations that
express properties of the visible entities, and also annotations of programs that use the package.

Package Annotations 39

Viewed from the outside a package is a composite object of some new (not defined in Ada) type. The
4values of this type are called package states. The type of the states is introduced as the 'TYPE

attribute of a package. The structure of a package state is not visible from the outside. Thus a
package state type behaves exactly as a private type exported by that package.

Whenever a call on a visible procedure of a package is performed, a change in the package state may
result. States resulting from the execution of a sequence of procedure calls can be denoted in Anna

N by operation sequences. Operation sequences are terms in Anna.

7.7.1 STATE TYPES

The type of all stats of a given package P is denoted by the attribute P'TYPE. It is called the state
type of P. The state type behaves in Anna as a virtual private type declared in the visible part of P. It is
introduced as an attribute so that the virtual declaration is omitted. It may be used in annotations and
virtual program text exactly as any other type. If P is a generic package and 0 is an instantiation of P,
then annotations for Q are obtained from the annotations of P by applying the Ada generic
instantiation rules and by replacing P by 0 everywhere. Thus, if P is generic then "P" acts like a
generic parameter in annotations. Equality is predefined on state types in Anna. However it may be
redefined by a virtual declaration of " - " in the package body (see section 7.7.3).

Examples of annotations of state types:

forall StlSt2 ; PLOTTING_OATA'TYPE > S1 *S2;
-- the PLOTTING.DATA package has no body so its
-- states are all trivially equal (ARM, 7.2).

forall S1,S2 : RATIONALNUMBERS'TYPE; X,Y ; RATIONAL a>
S1.EQUAL(XY) - S2.EQUAL(XY);

-- the value of the function EQUAL on any two rationals is independent
-- of the state of the rational numbers package [ARM, 7.3).

forall S STACK'TYPE ; X, Y ELEM ->
[S ; PUSH(X) : POP(Y)] S

-- for any state S of a STACK package, if a PUSH operation
-- is performed followed by a POP, then the resulting state
-- is equal to S. Note that STACK is generic and the annotation is
-- a template for all instances.

7.7.2 CURRENT AND INITIAL STATES

The current and initial states of any package are new primary terms in Anna. The .current state of a
package at any point in a program is denoted by the name of the package. The iniial state is denoted
by the attribute, 'INITIAL. The initial state of a package is the state after the elaboration of its
declaration (that is, after execution of its body, if any).

Examples of current states:

STANDARD -- current state of the package STANDARD,
STACKINSTANCE -- current state of the package STACK-INSTANCE

4

Package Annotations

Examples of initial states:

KEYMANAGER' INITIAL \-- initial state of the KEY.MANAGER package (ARM, 7.4.1).
STACK' INITIAL\-- initial state of any instance of the generic STACK package;

7.7.3 STATE COMPONENTS

Inside a package body the state type may be treated as if it has an implementation as a record whose
components are all the local objects of the package body. Here, in addition to objects in the Ada

*sense, the states of local packages are also included.

More precisely, let a:T 1 , b;T 2 .. , be the local objects declared in the body of package P. Let m, n, ... be
the nongenenc packages declared in the body of P. Then P'TYPE may be treated as if in the
declarative part of the body of P there is a type declaration of the form:

type P'TYPE is record
a: T,;
b: T2 ;

m : m'TYPE;
n: n'TYPE;

end record;

This Anna convention permits selection on states using the names of local objects. Selected
components of states may appear in expressions wherever the component names are visible.

Examples of expressions involving internal state components:

KEY MANAGERINITIAL.LAST-KEY a 0
-- internally any state of the KEY.MANAGER package has a LASTKEY
-- component; its initial value is 0 [ARM 7.4.1).

for all S : KEYMANAGER'TYPE; K : KEY >
(S; GET(K)].LASTKEY - S.LASTKEY + 1;

-- application of the GET prodecure in any state of KEY.MANAGER
-- increments the LAST.KEY component of that state.

for all S : STACK'TYPE > 0 <5 S.INDEX and S.INDEX < SIZE;
-- an internal generic invariant on all states of all instances of STACK.

Equality on state types is predefined as the identity on P'TYPE. It may be
redefined for a given package by a virtual declaration of the function "="
on state types in the package body. Annotations of such a declaration must
imply that the "x" satisfies the axioms for equality
(see examples in section 7.8).

..

Package Annotations 41

7.7.4 OPERATION SEQUENCES

"'". A state transition is the effect of executing a statement or of an elaboration. A subset of all possible

state transitions that may occur during execution of a program are those due to subprogram calls
(including calls to functions with side effects on global variables). Those package states resulting
from sequences of completed calls to visible subprograms of the package are given a special notation

*, in Anna as operation sequence terms. This provides a convenient and powerful method for
annotating the visible parts of packages.

An operation sequence in Anna denotes the state of a package after execution of a (sequence of)
subprogram call(s) to that package.

operatonsequence
(statename (subprogram-call}]

state-name : :a
identifier operationsequence

AIf the state name in an operation sequence is of type M'TYPE then the following subprogram calls
must be to visible subprograms of M and the resulting sequence has type M'TYPE. The unqualified
names of subprograms may be used in operation sequences since no ambiguity can result.

Suppose P'and 0 are visible subprograms of M, and S is an operation sequence of type M'TYPE. The
4state of M immediately succeeding S after completing a call, P(...), is denoted by

[S; P(...)].

:-, The notation for operation sequences is defined by:

. [S;P;0J - [S;PI;QI.

Examples of operation sequences:

[KEYMANAGER: GETKEY(A); GETKEY(B)]
-- the state of KEY-MANAGER after two calls to GET.KEY.

(STACK; PUSH (E)]
[STACK; PUSH (X); POP (Y)]

Notes:

1. Techniques for specifying module constructs by means of sequences of operations have
been previously suggested by Parnas and Bartussek [PB 77], Dahl [Da 78], and Luckham
and Polak [LP 801.

2. An operation sequence denotes a state only under the assumption that all subprogram
calls in it terminate and. do not propagate exceptions; otherwise it is meaningless (section
4.13).

-"I,.

42
Package Annotations

7.7.5 STATE RELATIVE RESULT VALUES

state-relative-resultvalue ::= statename . primary

In package annotations it is necessary to denote the values of functions and procedure parameters
resulting when package operations are applied in certain states. These values are said to be
computed relative to the state of the package. They are denoted by selection on states. The result of
applying a package function, f, in state, St, is denoted by St.f. Similarly the selection notation for the
final values of procedure out parameters may be applied to a state using the 'OUT attribute of that
procedure (see Section 4.1.3).

Examples of state oriented result values:

[St;PUSH(X)].POP'OUT(E->Y).E - X
-- the final value of the actual out parameter Y of a call to POP
-- in state [St;PUSH (X)) is X; E is the formal out parameter
-- in the specification of POP.

NULLKEY < [KEYMANAGER].GET-KEY'OUT(K->A).K
-- NULL.KEY is < the out value of A resulting from a
-- call to GET.KEY in the current state of the
-- KEY.MANAGER package.

Notes:

The selection notation, POP'OUT(E = >Y).E , denotes the final value of the actual out parameter, Y
say, bound to the formal E resulting from the procedure caiJ,. POP(Y). Use of the named parameter
notation with 'OUT functions is recommended for clarity (see section 4.1.3).

7.8 EXAMPLES OF PACKAGES WITH ANNOTATIONS

1. Example of a STACK package.

generic
type ELEM is private;
SIZE: NATURAL;
--I SIZE > 0; -- constraint on generic parameter SIZE.

package STACK is

OVERFLOW, UNDERFLOW: exception;

- - function LENGTH return INTEGER range 0. .SIZE;
function "w" (S. T : STACK'TYPE) return BOOLEAN;

this specification indicates that "a "will be
-- redefined in the package body.

procedure PUSH(E:in ELEM);
"'1 raise OVERFLOW =>
"'1 . STACK.LENGTH() " SIZE and
-- I [STACK;PUSH(E)] * STACK;

-- s-:,i

Package Annotations .43

procedure POP (E out ELEM);
-Iraise UNDERFIOW ->
-I STACK.LENGTH() - 0 and

-1 STACK;POP(E)J - STACK;

- axiom forail St:STACK'TYPE; X,Y:ELEM 0
-- I [St:PUSH(X);POP(Y)j z St Iand
-- I [St;PUSH(X)J.POP(E 0> Y).E a X and
-- I St'INITIAL.LENGTH() a 0 and
-- I [St;PUSHi(X)J.LENGTH() - St.LENGTH() + 1 and
--I [St;POP(X)).LENGTH() a St.LENGTH() - 1;

end STACK;

package body STACK Is

type ELEM..ARRAY Is array(1. .SIZE) of ELEM;
SPACE : ELEM..ARRAY;
INDEX :INTEGER range 0. .SIZE := 0;

-- this declaration of the state type is not necessary but is included for
-- completeness; it is the default assumed in Anna, see section 7.7.3.

type STACK'TYPE Is record
SPACE :ELEMJ.ARRAY;

- -. INDEX :INTEGER range 1 .. SIZE;
end record;

* ,~--Iwhereforal S :STACKITYPE -> 0 <- S.index <- siZe;
-- this constraint on STACK TYPE is equivalent to a monitor invariant
-- in Hoare's sense (Hoare 751.

function LENGTH return INTEGER range 0. .SIZE;
-- I return STACK.INDEX:

-- redefinition of function " on STACK 'TYPE.
function "am (S. T STACK'TYPE) return BOOLEAN;

-jreturn S.INDEX a T.INOEX and
(foral K:INTEGER range 1 .. S.INDEX a>

-- I S.SPACE(K) a T.SPACE(K));

procedure PUSH'(E:in ELEM)
- where out INDEX *in INDEX + 1 and

out SPACE *ELEM-ARRAY'UPOATE
(in SPACE, out INDEX 0> E);

Is
begin

if INDEX a SIZE then.
raise OVERFLOW;

else
! INDEX :a INDEX +1;
SPACE(INDEX) :a E:

end If;

44 Package Annotations

end PUSH;

procedure P(EotELEM)
- where out INDEX z In INDEX-i1 and
-g out SPACE a in SPACE and

begin ~out E a out SPACE (in INDEX);

if INDEX - 0 then
-~ raise UNDERFIOW;

else
4/. E := SPACE(INDEX);

INDEX :INDEX -1;

end It;
end POP;

end STACK;

2. Example of a symbol table package

generic
* type TOKEN is private;

N: INTEGER;
package SYNTAB Is

OVERFLOW, UNDEFINED :exception;

function SIZE return INTEGER range 0 .. N;
function "all (SS, TT : SYMTAB'TYPE) return BOOLEAN;

function DEFINED (S: STRING) return BOOLEAN;

procedure INSERT(S: STRING; I: TOKEN);

-Jraise OVERFLOW => SYMTAB.SIZE z N;

function LOOKUP(S: STRING) return TOKEN;
- raise UNDEFINED x) SYMTAB a SYMTAB'INITIAL:

procedure ENTERBIOCK;

procedure LEAVEBLOCK;

--jaxiom
-Iforali SS : SYMTAB'TYPE; ST : STRING; I :TOKEN u
-- [SYMTAB-INITIAL; LEAVEBLOCK) - SYMTAB'INITIAL and

-- I SYMTAB-INITIAL.DEFINED(Sy a FALSE and
-- SS;ENTERBLOCK;LEAVEBLOCK]=SS and

4 -- ~[SS:ENTERgtOCKJ.DEFINED(S) x FALSE and
-- I [SS: ENTERBLOCKJ.L.OOKUP(S) a SS.LOOKUP(S) and
-- I (SS;INSERT(S.I);LEAVEBLOCKJz[SS;LEAVEBLOCK] and
-- I CSS; INSERT (S.I)]. DEF INED(T) if S - T then TRUE

Package Annotations 45

else SS.DEFINED(T) and
-- I [SS;INSERT(S.I)].LOOKUP(T) = if S = T then I else SS.LOOKUP(T);

end SYMTAB;

package body SYMTAB Is

type ELEM is record
* LEVEL :INTEGER;

MEMBER : STRING;
TOK : TOKEN;

end record.;

type STORE isarray (1 .. N) of ELEM:
subtype INDEXRANGE is INTEGER range 0 .. N;

TABLE : STORE;
LEXLEVEL : INTEGER : 0;
INDEX : INDEXRANGE 0:

-- this declaration of the state type is not necessary but is included for
-- completeness; it is the default assumed in Anna, see section 7.7.3.

. -- :type SYMTAB'TYPE is record
-- : TABLE : STORE;

LEXLEVEL : INTEGER;

INDEX : INDEX-RANGE;
b(end record];

function SIZE return INTEGER range 0.. N;
-' return SYMTAB.POS;

function "=" (SS, TT : SYMTAB'TYPE) return BOOLEAN;
C. "- return SS.POS a TT.POS and
-- -- l forall I : INTEGER range 1 ..SS.POS -> SS.TB(I) = TT.TB(I);

function DEFINED (S: STRING) return BOOLEAN is
' -'- return exist I : INDEXRANGE range 1 .. INDEX a>

TABLE (I).MEMBER - S and TABLE (I).LEVEL = LEXLEVEL;
I : INDEXRANGE;
J : ELEM;

begin
if INDEX = 0 orelse LEXLEVEL > TABLE (INDEX).LEVEL then

return FALSE;
else

I :- INDEX;
loop
J :- TABLE (1);

exit when J.LEVEL < LEXLEVEL;
If J.MEMBER - S then return TRUE; endif:
I :" 1-I;

end loop;
return FALSE:4 n op

S n I

. , . + '+- ,+,+ * .,s - . - + 5,' '': '• 5-9 - l %

+ + .' ' .-...... ,+,+ + . + + + .+ .+.+..++-. -+ ,, ,+. . +

* 46 Package Annotations

end If:
end DEFINED;

procedure INSERT(S: STRING; I: TOKEN) Is
-- I raise OVERFLOW => SYMTAB.SIZE - N;

begin
If INDEX - N then

raise OVERFLOW;
else

INDEX :a INDEX + 1;
TABLE (INDEX) :- ELEM'(LEXLEVEL. S, I);

end It;
end INSERT:

function LOOKUP(S: STRING) return TOKEN is
- raise UNDEFINED 0> SYNTAB in SYMTAB'INITIAL;
- return J TOKEN that exist I :INDEX..RANGE

rangelI .. INDEX >
TABLE (1) .MEMBER =S and rABLE (I).'TOK =;

I INDEXRANGE;
begin

I :INDEX;
if I a 0 then raise UNDEFINED: end If;

lopexit when I a 0;

if TABLE (I).MEMBER =S then
return TABLE (1).TOK;

else
I :Ii

S. end If;
end loop;
raise UNDEFINED;

end LOOKUP;

procedure ENTERBIOCK Is
-- I out LEXLEVEL a in LEXLEVEL + 1;

begin
* LEXLEVEL :- LEXLEVEL + 1;

end ENTERBLOCK;

procedure LEAVEBLOCK is
4 -- ~out (LEXIEVEL a In LEXLEVEL - 1 and

INDEX - that I (in TABLE (I).LEVEL =in

-- I LEXLEVEL - 1 and
In TABLE (I+1).LEVEL a in LEXIEVEL))

begin
loop

exit when TABLE (INDEX).LEVEL < LEXLEVEL;
INDEX :INDEX - 1;

end loop;
LEXLEVEL :*LEXLEVEL - 1;

end LEAVEBLOCK;

end SYMTAB;

111 q .s

WSIBLIT RULE INANOAIOS4

8VISIBILITY RULES IN ANNOTATIONS 4

8.1 No addition.

* 8.2 SCOPE OF A DECLARATIVE ANNOTATION

e The scope of a declarative annotation is. the smallest enclosing scope of the declaration
of any name in the declarative annotation, at mast the scope of a declaration at the
beginning of the respective declarative part.

* The scope of a declaration in the domain of a quantified expression extends from the
declaration to the end of the expression.

* The scope of a virtual declaration, i.e., a declaration made within a virtual text sign, --:, is
the same as if the virtual text sign is removed and the declaration is considered to be in
the Ada text at the same point.

8.3 VISIBILITY

9 The identifier of a formal out or In out parameter of a procedure is also visible as a
selected component in expressions in annotations containing a 'OUT function attribute.

* An identifier declared in the domain of a quantified expression is directly visible in the
expression subsequent to =n>.

* A virtual declaration, i.e., a declaration made within a virtual text sign. , is visible only in
other formal comments (virtual text and annotations) within its scope.

48 TASK. ANNOTATIONS-.

48. TASK ANNOTATIONS

Omission: A theory of annotations of tasks and multitask systems has yet to be developed.
* * Extensions of Anna to tasks are planned. This will almost certainly involve introducing new

predefined attributes associated with tasks and extending the language of expressions in annotations
with modal operators.

- TASK ANNOTATIONS 49

10. PROGRAM STRUCTURE

context ::
-[context-annotat ion]
(wlth-clause [use..clause] [context annotation])

'.' context-annotation ::"
limited [to (name-list; [declarative-annotation;])]

A context annotation restricts the visibility of variables further than the Ada context for the purposes
of verification. If it is omitted, the usual Ada rules of visibility apply. Otherwise all variables required in
the annotated unit must appear in a context annotation; it has the same meaning as if the global
variables were (additional) formal parameters.

For any access type T, T'Collection denotes the associated collection variable and is thus required for
any change of the collection, that is allocation for the access type. Functions are pure if their
requiredlist is empty, and side-effect free, if constancy is specified for all visible variables.

Examples of context annotations:

-- limited
package body STACK Is

type ELEM...ARRAY is ARRAY(t..SIZE) of ELEM;
SPACE: ELEMARRAY:
INDEX:XNTEGERrange 0..SIZE :a 0;

procedure PUSH(E:ln ELEM) is separate;
"-I where out INDEX - in INDEX + 1 and

,4 "- out SPACE a ELEMARRAY'UPDATE (in SPACE, out INDEX, E);
end STACK:

"'1 limited to SPACE, INDEX;
separate (STACK)
procedure PUSH(E;in ELEM) Is.

end PUSH;

.P. .o ' , ''',.'';'. ,,- ..* .,..-.;'2 ";";_;.- : .;i."- ,;:- "42: .',',- ,.','--o:.. .'..o ,' ,.

50 EXCEPTION ANNOTATIONS

11. EXCEPTION ANNOTATIONS

Exception annotations are either annotations of an exception handler, or else propagation
annotations in a subprogram declaration. Their purpose is to specify conditions under which a
handler expects an exception, and conditions under which a subprogram expects to propagate an
exception. If the annotations are sufficiently complete, they will enable proofs of consistency
between programs and annotations to be obtained in the presence of exceptional behaviour (see
[Luckham and Polak 80a]).

11.2 ANNOTATION OF EXCEPTION HANDLERS

Exception handlers may be annotated exactly as any other sequence of statements. Most important,
an annotation at the beginning of the sequence of statements of an exception handler must be true
before the handler is executed. (Such an annotation therefore constrains the situation in which the
exceptions that are to be handled by that handler may be raised.

ANote: An annotation at the beginning of a sequence of statements (of a compound statement,
subprogram body, etc.) is an annotation of a null statement and constrains the entry state.

Example of a handler annotation

begin
-- sequence of statements
exception

when SINGULAR I NUMERIC-ERROR >

--I OET(A) - 0: -. entry condition for handler
PUT ("A IS SINGULAR");

when others -0
PUT("FATAL ERROR");
raise ERROR;

end;

11.3 PROPAGATION ANNOTATIONS

propagationannotation
raise exceptionchoice (I exception-choice)

ur> booleanexpression]

A propagation annotation for a subprogram specifies the exceptions that may be raised as the result
of a call to that subprogram, and the condition under which they are raised. A subprogram call is
equivalent to a raise statement for one of the exceptions whenever an exception is propagated as the
result of the call. The boolean expression subsequent to a > must then hold.

Examples of propagation annotation:

procedure PUSH (E: in ELEM);
"'I raise OVERFLOW > STACK'.LENGTH() SIZE;S.

Exception Annotations 51

procedure BINARY-SEARCH (A :In ARRAY-.O-INTEGER;
KEY :in INTEGER;
POSITION :out INTEGER)

- A(out POSITION) a KEY;
--Iraise NOT-..FOUND a)
-- I ORDERED (A) f> orall I In range A'RANGE 0>

-Inot KEY A(I)

52 ANNOTATION OF GENERIC UNITS

12. ANNOTATION OF GENERIC UNITS

A generic declaration includes a generic part and declares a generic subprogram or a generic
package. The generic part may include the definition of generic parameters.

Annotations appearing in generic units may contain the generic parameters of the unit. Such
A annotations are templates that may be instantiated according to the Ada rules for matching actual

and formal generic parameters. Instances of a generic unit are then annotated by the same instances
of the annotation of the generic parent unit.

12.1.1 ANNOTATION OF GENERIC PARAMETERS

Generic formal parameters may be annotated analogously to formal parameter annotations (Sec.

REFN A T.RTTRIBUTES . -

PREDEFINED A TTRIBUTES 53

L, PREDEFINED ANNA ATTRIBUTES

Attribute of any access type:

COLLECTION T'COLLECTION Is a package denoting the collection of all allocated objects.

NULL T'NULL corresponds to S'(nu II).

ALLOCATE T'ALLOCATE(X : in out T)-is a procedure attribute corresponding to new S; the
* out value of X is the newly allocated value. Values for constraints are added if

neesy.

1' ELEMENT T'ELEMENT (X: T) is a Boolean valued function attribute, returning TRUE if X has
been allocated a value in T'COLLECTION.

Attribute of any procedure:

OUT P'OUT is a function returning a record containing the final values of the out
parameters of P after a call. The formal parameter names of P are the component
names of this record.

Attributes of any package:

AXIOM X'AXIOM binds an annotation to the visible part of package X. This axiom is then
guaranteed to be true of all elements in the visible part.

54 REFERENCES

REFERENCES

(Bauer et al. 78] Bauer, F.L., Broy, M., Gnatz, R., Hesse, W. and Krieg- Bruckner, B., A Wide Spectrum
Language for Program Development In: Robinet, B. (ed.), Program Transformations: 3rd Int. Symp.
on Programming, Paris (1978), 1 -15.

[Broy and Kreg-Bruckner 80] Broy, M. and Kreg-Bruckner, B., Derivation of Invariant Assertions
During Program Development by Transformation, ACM TOPLAS (to appear 1980).

[FORM 81] Formal Definition of the Ada Programming Language, IRIA, V. Donzeau-Gouge, G. Kahn,
B. Lang. (Nov. 1980).

(Hoare 69] Hoare, C.A.R., An Axiomatic Basis for Computer Programming, CACM 12, (Oct. 1969),
576-580.

(Hoare 751 Hoare, C.A.R., Monitors: An Operating System Structuring Concept. CACM 18. No.2,
* (1975).

[Hoare and Wirth] Hoare, C.A.R, and Wirth, N., An Axiomatic Definition of the Programming Language
Pascal, Acta Informatca 2 (1973), 335-355.

[Ichbiah st al. 79a] Ichbiah, J.D., Krieg-Bruckner, B., Wichmann, B.A., Ledgard, H.F., Hellard, J-C.,
Abrial, J.R., Barnes, G.P., and Roubine, 0., Preliminary Reference Manual for the Ada Programming
Language, ACM SIGPLAN Notices (June 1979), Part A.

[Ichbiah et al. 79b] Ichbiah, J.D., Krieg-Bruckner, B., Wichmann, B.A., Ledgard, H.F., Heliard, J-C.,
Arbrial, J-R., Barnes, G.P., and Roubine, 0., Preliminary Rationale for the Design of the Ada
Programming Language, ACM SIGPLAN Notices (June 1979), Part B.

(Luckham and Polak 80a] Luckham, D., and Polak, W., Ada Exception Handling - An Axiomatic
Approach, ACM TOPLAS, (May, 1980).

(Luckham and Pulak 80b] Luckham, D., and Polak, W., A Practical Method of Documenting and
Verifying Ada Programs with Packages, Proc. Ada Conference, (Dec. 1980).

[Luckham and Suzuki 79] Luckham, D.C., and Suzuki, N., Verification of Array, Record and Pointer
Operations in Pascal, ACM TOPLAS 1, 2 (October 1979), 226.244.

(SVG 79] Luckham, D.C.. German, S.M., v Henke, F.W., Karp, R.A., Milne, P.W., Oppen, D.C., Polak,
W., Scherlis, W.L., Stanford Pascal Verifier User Manual, Stanford University, Stanford Verification
Group, Report No. 11, 1979.

.4,', r,; , .-,/ , ;..',. .. ;%,.. .. ' ..:r"':; - ;.. - %

* MISSION
Of

Rome Air Development Center
RAVC Ptan& and exeCLLt teueaA, devetopment, te6.t andAe.LPJttd acquJi6ition p40g4m in,6 %upot oA Conwznd, Cont'wt
Comuwction and Intettience (C01) aL~tvitieA. Technico2

* ~~~and engi.neeting 6uppout. wUhin akeA6 oi tedenmtja e-oipe~ten
i4 ovi-ded .to ESP Ptogizan Oieu (POA) and otJWL ESV
etementa. The pki1nepaL techn.4t sL~don a~ea6 m'ie
comm'wicatonb, eteatomagnetic guidance &Md conttot, Au,%-vei~anc~e oj gtocmd and de~O.6 paCe object6, i.ntetgence data
cottect~on and hadng, injoiution a6tem .techooy
i4 6pkeLi pu~pagation, oid 6U t 4t 6eeneA, icAowave
phy.6ie6 and etectuLnic %etiZtty, main&Lnabitty and
Coupa~biL~tV.

PC *4

- ~~I - t .,

3-: -.. 4 * : 1 -

71

40

jjr

or

